Osteoporotic fractures are the result of low density and especially inferior bone quality (microarchitecture) caused by both internal (genes, hormones) and external (life style) influences. Bone mechanosensors are extremely important for the overall integrity of the skeleton, because in response to mechanical load they activate its modeling, resulting in an increase in bone density and strength. The largest physiological loads are caused by muscle contractions. Bone mass in adult men has a closer relationship to muscle mass than is case in women. The sexual differences in the relationship between bone and muscle mass are also apparent in children. Based on the mechanostatic theory, the muscle-bone unit has been defined as a functional system whose components are under the common control of the hormones of the somatotropin-IGF-I axis, sexual steroids, certain adipose tissue hormones and vitamin D. The osteogenic effects of somatotropin-IGF-I system are based on the stimulation of bone formation, as well as increase in muscle mass. Moreover, somatotropin decreases the bone mechanostat threshold and reinforces the effect of physical stress on bone formation. The system, via the muscle-bone unit, plays a significant role in the development of the childhood skeleton as well as in its stability during adulthood. The muscle and bone are also the targets of androgens, which increase bone formation and the growth of muscle mass in men and women, independently of IGF-I. The role of further above-mentioned hormones in regulation of this unified functional complex is also discussed., I. Žofková., and Obsahuje bibliografii a bibliografické odkazy
Perinatal (1-2 days of age) and one-month-old (24-32 days of age) male goats were used to investigate the effect of age and long-term culture (24 h) of perirenal and omental adipose explants in the presence of insulin, cortisol and bovine somatotropin (alone or in different combinations) on net glucose-stimulated lipogenesis (NGSL, i.e. the rate of lipogenesis in the presence of glucose minus the rate of lipogenesis in the absence of glucose) in the absence and in the presence of catecholamines in acute incubations (2 h). Mean values of NGSL in both freshly prepared and cultured explants were consistently lower in perinatal than in one-month-old goats. Cortisol alone decreased and combinations of insulin plus cortisol increased NGSL in perirenal explants of one-month-old animals. When perirenal explants from these one-month-old goats were cultured in the presence of insulin plus cortisol plus bovine somatotropin, the rates of lipogenesis were lower than those in cultures with insulin plus cortisol. No such effects of these hormones were noted in omental explants of both perinatal and one-month-old animals. In freshly prepared perirenal and omental explants, the rates of NGSL were inhibited by isoprenaline in tissues of both groups of animals and by noradrenaline in omental tissues of animals of the older group only. The mean values of NGSL in cultured explants of perinatal animals were not affected by noradrenaline. Isoprenaline inhibited NGSL in omental but not in perirenal tissue. In older animals the rates of NGSL were decreased by both noradrenaline and isoprenaline in perirenal and omental adipose tissues. Isoprenaline was more effective than noradrenaline in perirenal adipose tissue., J. Škarda., and Obsahuje bibliografii
We measured hormonal levels in blood samples from pulmonary and radial arteries in 117 patients undergoing aorto-coronary by-pass surgery with the aim of investigating the role of the pulmonary vessel endothelium in hormone metabolism. Insulin and glucagon concentrations were significantly higher in pulmonary artery blood with respect to radial artery blood (73±65 vs. 65±47 pmol/l, p<0.005, and 80+49 vs. 73+51 ng/l, p<0.01, respectively), while no difference was found for growth hormone, prolactin, C peptide, insulin-like growth factor I, follicle stimulating hormone, luteinizing hormone, thyroid stimulating hormone, parathyroid hormone, thyroglobulin, triiodothyronine, thyroxine, free triiodothyronine, and free thyroxine. Moreover, prolactin concentrations were more than twice the normal levels, this being an effect of propafol and the opiate fentanyl used for the general anesthesia. Assuming that the arteriovenous differences observed are a marker of peptide hormone degradation, our study has demonstrated that with similar kinetics insulin and glucagon secreted into portal circulation and escaping from hepatic extraction undergo further homeostatic removal of about 9-10 % in the pulmonary circulation before entering the general circulation., G. Aliberti, I. Pulignano, M. Proietta, F. Miraldi, L. Cigognetti, L. Tritapepe, C. Di Giovanni, R. Arzilla, E. Vecci, M. Toscano., and Obsahuje bibliografii
Testosterone has been widely investigated in associations with many aspects of social interactions, emotions and behavior. No research has been conducted on its contribution to the variability of love styles in human. The aim of this paper was to uncover the possible relationship between not only the actual plasma testosterone levels, but also the prenatal testosterone level (expressed as 2D:4D ratio) and the sensitivity of androgen receptor and love typology in young healthy men. There are six love styles which are primary including Eros (passionate romantic love), Ludus (playful) and Storge (friendly) and secondary love consisting of Mania (obsessive), Pragma (practical realistic) and Agape (altruistic). Our results pointed out that low testosterone concentrations are associated with higher score for Eros, Ludus, Pragma, Mania love style. No significant association was proved for other tested parameters of androgenicity (2D:4D, sensitivity of androgen receptor) and love style after correction was applied. Different attitudes and behavior in relationships do have a biological foundation related to endogenous testosterone levels in plasma. Future studies should address questions about the family and social background of participants to differentiate here between moral rules or/and social-conventional rules., J. Babková Durdiaková, P. Celec, I. Koborová, T. Sedláčková, G. Minárik, D. Ostatníková., and Obsahuje bibliografii
Hormones exert many actions in the brain. Their access and effects in the brain are regulated by the blood-brain barrier (BBB). Hormones as other substances may enter the brain and vice versa either by paracellular way requiring breaching tight junctions stitching the endothelial cells composing the BBB, or by passage through the cells (transcellular way). Hormones influence both ways through their receptors, both membrane and intracellular, present on/in the BBB. In the review the main examples are outlined how hormones influence the expression and function of proteins forming the tight junctions, as well as how they regulate expression and function of major protein transporters mediating transport of various substances including hormone themselves., R. Hampl, M. Bičíková, L. Sosvorová., and Obsahuje bibliografii
Research and clinical implications on novel cardiac biomarkers has intensified significantly in the past few years. The highsensitive troponin T (hscTnT) assay plays a dominant role in diagnostic algorithm regarding myocardial injury in adults. Despite generally accepted use of hscTnT there are no data about physiological concentrations and cut-off limits in neonates and infants to date. The aim of this study is to assess hscTnT levels in healthy newborns and infants. Consecutively 454 healthy full termed newborns and 40 healthy infants were enrolled in the study. Samples of cord or venous blood were drawn and tested for hscTnT concentrations with high-sensitive TnT assay (Roche Cobas e602 immunochemical analyzer). The 97.5 percentile of hscTnT concentration was assessed and correlation analysis was performed in neonates. Two hundred and thirteen samples (47 %) were excluded due to blood hemolysis of various degrees in neonates. Finally, the group of 241 healthy newborns was statistically analyzed. The median concentration of hscTnT was 38.2 ng/ml, 97.5 percentile reached 83.0 ng/l (confidential interval 74.1 to 106.9 ng/l). HscTnT concentrations were statistically decreased in hemolytic samples when compared to non-hemolytic samples (34.3 ng/l [26.7 to 42.0 ng/l] and 37.1 ng/l [30.5 to 47.9 ng/l], respectively, p=0.003). Elevated plasma concentrations of hscTnT decreased to adult level within six months. This study has confirmed the higher reference levels of hscTnT in neonates and young infants when compared with adult population. Many extracardiac factors as hemolysis and age may affect the hscTnT level. Based on presented results, a careful clinical interpretation of hscTnT is recommended., P. Jehlička, M. Huml, D. Rajdl, A. Mocková, M. Matas, J. Dort, A. Masopustová., and Seznam literatury
In this paper, we describe the synthesis, physicochemical characterization, drug release kinetics and preliminary biological evaluation of several N-(2-hydroxypropyl)methacrylamide (HPMA)-based polymer-retinoid conjugates designed for solid tumor immunotherapy. The conjugates are supposed to inhibit the immunosuppressive activity of myeloid-derived suppressor cells (MDSC) accumulated in the solid tumor microenvironment. All-trans retinoic acid (ATRA) was derivatized to hydrazide (AtrHy) and then attached to the polymer backbone via a spacer that is stable at the normal pH of blood (7.4) and hydrolytically degradable in mildly acidic environments (e.g. in endosomes or lysosomes, pH~5.0-6.5). Polymer-AtrHy conjugates were designed to achieve prolonged blood circulation and release of the immunomodulator intracellularly or extracellularly in solid tumor tissue. Three types of polymer precursors, differing in the structure of the keto acid-containing side chains, were synthesized. A linkage susceptible to hydrolytic cleavage was formed by the conjugation reaction of the carbonyl groupterminated side chains of the polymer precursors with the hydrazide group of a drug derivative. In vitro incubation of the conjugates in buffers resulted in much faster release of the drugs or their derivatives from the polymer at pH 5.0 than at pH 7.4, with the rate depending on the detailed structure of the spacer. Both the AtrHy derivative and its polymer conjugates showed the ability to induce the differentiation of retinoid-responsive HL-60 cells, thus demonstrating the required biological activity., O. Lidický, M. Šírová, T. Etrych., and Obsahuje bibliografii
We studied hsBAFF activity in in vitro mouse splenic B cells. hsBAFF effects on intracellular free Ca 2+ concentration ([Ca 2+ ] i ) were assayed, using a laser scanning confocal microscope with fluorescent probe, Fluo-3/AM. We showed that treatment of B cells with 0.5-5 μ g/ml hsBAFF resulted in significantly higher [Ca 2+ ] i levels in a dose-dependent fashion at 12 and 24 h, respectively (p<0.05 or p<0.01 vs. control). Furthermore, we noticed that 2.5 μ g/ml hsBAFF-treated cells were significantly resistant to decrease of cellular viability induced by thapsigargin (Tg), an endoplasmic reticulum (ER) Ca 2+ -ATPase inhibitor (p<0.05 hsBAFF plus Tg group vs. Tg group). Thus hsBAFF may promote B cell survival by direct upregulation of [Ca 2+ ] i physiological homeostasis contri buting to prevention of [Ca 2+ ] i dysfunction. Using immunocytochemistry and Western blot analysis, we found that the activation of ERK1/2 due to hsBAFF was triggered by a [Ca 2+ ] i -dependent pathway, leading to elevation of B cell proliferation. This is supported by the findings that intracellular Ca 2+ chelator BAPTA/AM attenuated phosphorylated ERK1/2 expression and cell proliferation in hsBAFF-stimulated B cells. hsBAFF-stimulated B cell proliferation was obviously reduced by mitogen extracellular kinase 1/2 (MEK1/2, upstream of ERK1/2) inhibitor U0126. Taken together, the main finding of this study is that hsBAFF elicits higher but homeostatic [Ca 2+ ] i levels, which regulates ERK1/2 activity and cell proliferation in in vitro B cells., J. Q. Liang, W. Zhang, L. Wen, W. Gao, S. Q. Zhang, L. Chen., and Obsahuje bibliografii
Impressive advances in molecular genetic techniques allow to analyze the effects of natural selection on the development of human genome. For example, the trend towards blonde hair and blue eyes was documented. The approach to analyze possible effects of natural selection on the evolution of recent phenotypes with high risk of cardiovascular disease has not been described yet. A possible effect on the evolution of two main risk factors - hypercholesterolemia and hypertension - is presented. The close relationship of non-HDL cholesterol blood concentration to the proportion of pro-inflammatory macrophages in human visceral adipose tissue might be a result of long-lasting natural selection. Individuals with higher proportion of this phenotype might also display a higher ability to fight infection, which was very common in human setting from prehistory until Middle Ages. Successful battle against infections increased the probability to survive till reproductive age. Similar hypothesis was proposed to explain frequent hypertension in African Americans. A long-lasting selection for higher ability to conserve sodium during long-term adaptation to low sodium intake and hot weather was followed by a short-term (but very hard) natural selection of individuals during transatlantic slave transport. Only those with very high capability to retain sodium were able to survive. Natural selection of phenotypes with high plasma cholesterol concentration and/or high blood pressure is recently potentiated by high-fat high-sodium diet and overnutrition. This hypothesis is also supported by the advantage of familial hypercholesterolemia in the 19th century (at the time of high infection disease mortality) in contrast to the disadvantage of familial hypercholesterolemia during the actual period of high cardiovascular disease mortality., R. Poledne, J. Zicha., and Seznam literatury
We analyzed human postural responses to muscle vibration applied at four different frequencies to lower leg muscles, the lateral gastrocnemius (GA) or tibialis anterior (TA) muscles. The muscle vibrations induced changes in postural orientation characterized by the center of pressure (CoP) on the force platform surface on which the subjects were standing. Unilateral vibratory stimulation of TA induced body leaning forward and in the direction of the stimulated leg. Unilateral vibration of GA muscles induced body tilting backwards and in the opposite direction of the stimulated leg. The time course of postural responses was similar and started within 1 s after the onset of vibration by a gradual body tilt. When a new slope of the body position was reached, oscillations of body alignment occurred. When the vibrations were discontinued, this was followed by rapid recovery of the initial body position. The relationship between the magnitude of the postural response and frequency of vibration differed between TA and GA. While the magnitude of postural responses to TA vibration increased approximately linearly in the 60-100 Hz range of vibration frequency, the magnitude of response to GA vibration increased linearly only at lower frequencies of 40-60 Hz. The direction of body tilt induced by muscle vibration did not depend on the vibration frequency., A. Polónyová, F. Hlavačka., and Obsahuje bibliografii