The taxonomy of Diplectanum Diesing, 1858, a genus of monopisthocotylean monogeneans, remains unsettled and needs to be revised based on new morphological criteria. Recent studies in monopisthocotyleans have shown that the muscle arrangement in the posterior attachment organ (haptor) differs between congeneric species and can be used as an additional criterion in genus-level taxonomy. To explore the possibility of using the haptoral musculature and nervous system in the taxonomy of Diplectanum, we conducted a detailed confocal-microscopy study of three species of Diplectanum (D. aculeatum Parona et Perugia, 1889, D. sciaenae van Beneden et Hesse, 1863 and D. similis Bychowsky, 1957) with phalloidin staining for muscle and indirect immunostaining for 5HT and FMRFamide. A further goal was to clarify the functional mechanics of the haptor and the role of its essential components (squamodiscs and anchors) in attachment to the host. The system of connecting bars and gaffing anchors was found to have a complex musculature consisting of 23 muscles in D. aculeatum and D. sciaenae, and 21 muscles in D. similis. The squamodiscs were shown to be operated by several groups of muscles attached primarily to the area termed the squamodisc fulcrum. Most of the haptoral musculature is identical in D. aculeatum and D. sciaenae and these species differ only in the presence of a muscle sheath around the tissue strand between the squamodiscs in D. sciaenae and in the different patterns of superficial squamodisc muscles. Diplectanum similis shows more significant differences from the other two species: besides lacking two of the haptoral muscles, it also differs in the shapes and arrangement of several other muscles. The nervous system of all three species conforms to the general pattern typical for the Dactylogyroidea and shows little variation between species., Anatoly A. Petrov, Evgenija V. Dmitrieva, Maryana P. Popyuk, Pavel I. Gerasev, Sergey A. Petrov., and Obsahuje bibliografii
The long QT syndrome (LQTS) is a monogenic disorder characterized by prolongation of the QT interval on electrocardiogram and syncope or sudden death caused by polymorphic ventricular tachycardia (torsades de pointes). In general, mutations in cardiac ion channel genes (KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2) have been identified as a cause for LQTS. About 50-60 % of LQTS patients have an identifiable LQTS causing mutation in one of mentioned genes. In a group of 12 LQTS patients with no identified mutations in these genes we have tested a hypothesis that other candidate genes could be involved in LQTS pathophysiology. SCN1B and KCND3 genes encode ion channel proteins, ANK2 gene encodes cytoskeletal protein interacting with ion channels. To screen coding regions of genes SCN1B, KCND3, and 10 exons of ANK2 following methods were used: PCR, SSCP, and DNA sequencing. Five polymorphisms were found in screened candid ate genes, 2 polymorphisms in KCND3 and 3 in SCN1B. None of found polymorphisms has coding effect nor is located close to splice sites or has any similarity to known splicing enhancer motifs. Polymorphism G246T in SCN1B is a novel one. No mutation directly causing LQTS was found. Molecular mechanism of LQTS genesis in these patients remains unclear., M. Raudenská, A. Bittnerová, T. Novotný, A. Floriánová, K. Chroust, R. Gaillyová, B. Semrád, J. Kadlecová, M. Šišáková, O. Toman, J. Špinar., and Obsahuje bibliografii a bibliografické odkazy
Two species of Myxobolus Bütschli, 1882 were found in yellow catfish Tachysurus fulvidraco (Richardson). A species of Myxobolus infecting the gills was morphologically identified as Myxobolus voremkhai (Akhmerov, 1960) and it was characterised here with additional morphological and molecular data. The other species of Myxobolus infecting the host's skin did not conform to any known myxosporean species. It is characterised by the presence of round, black or milky white plasmodia with black spots. Myxospores are pyriform in frontal view and lemon-shaped in lateral view, measuring 12.9-16.2 μm (14.6 ± 0.7 μm) in length, 8.1-10.8 μm (9.4 ± 0.5 μm) in width, and 6.1-8.1 μm (7.0 ± 0.4 μm) in thickness. Two ampullaceous polar capsules are slightly unequal in size, larger polar capsule 7.2-9.5 μm (7.9 ± 0.4 μm) long by 3.0-3.9 μm (3.5 ± 0.2 μm) wide, smaller capsule 6.9-8.0 μm (7.4 ± 0.3 μm) long by 2.9-3.9 μm (3.4 ± 0.2 μm) wide. Polar filaments are coiled with seven to nine turns. Histologically, the plasmodia develop in the stratum spongiosum of skin dermis, resulting in epithelial cell shedding and immunological cell infiltration. Given the morphological and molecular differences between this species and other species of Myxobolus, we proposed the name of Myxobolus pseudowulii sp. n. for this parasite from the skin of yellow catfish. Interestingly, some spores of the new species possess Henneguya-like caudal appendages. Phylogenetically, M. pseudowulii sp. n. and M. voremkhai infecting yellow catfish group together in one clade with other parasites of Siluriformes, indicating that parasites clustering according to the fish host order may be an important factor affecting the evolution of species within the Myxobolus clade., Bo Zhang, Yanhua Zhai, Yang Liu, Zemao Gu., and Obsahuje bibliografii
Myxobolus taibaiensis sp. n. was found in the inner intestinal wall of common carp, Cyprinus carpio Linnaeus, during the investigation of fish parasite fauna in Lake Taibai, located in the middle reach of the Yangtze River, China. The whitish ellipsoidal plasmodia, up to 2.9 mm long and 1.7 mm wide, developed in the circular muscle layer of the intestinal wall and produced significant compression into adjacent tissues, but no significant inflammatory responses were observed against this infection. Mature spores are oval in frontal view and lemon-like in lateral and apical view, averaging 10.2-11.2 µm (10.8 ± 0.2 µm) in length, 9.1-9.9 µm (9.6 ± 0.2 µm) in width and 6.1-6.6 µm (6.3 ± 0.1 µm) in thickness. Polar capsules are pyriform, equal in size, slightly converging anteriorly, measuring 4.4-5.4 µm (5.0 ± 0.2 µm) in length by 3.2-3.6 µm (3.4 ± 0.1 µm) in width. Polar filaments coiled with four to five turns and arranged perpendicular to the polar capsule length, measuring up to 106 µm. Myxobolus taibaiensis sp. n. is morphologically similar to Myxobolus rotundatus Achmerov, 1956 which also infects the inner wall of the intestine of common carp. However, the small subunit ribosomal DNA sequence identity was only 94%, generally beyond the intraspecies variation in the genus. Phylogenetically, this new species is sister to M. rotundatus and then clusters with M. shantungensis Hu, 1965 to form an independent common carp-infecting cluster within the Henneguya-Myxobolus clade., Xinhua Liu, Congjie Hua, Qianqian Zhang, Yuanli Zhao, Dong Zhang, Jinyong Zhang., and Obsahuje bibliografii
Recent research in isolated Bulgarian mires has discovered many unknown disjunct populations of boreal vascular plant and bryophyte species. These findings draw attention to these recently endangered mires which represent a source of very important scientific information. and Michal Hájek, Petra Hájková.
Dokumentační fotografie vegetace a krajiny má specifické požadavky na prosvětlené snímky zachycující detailní kresbu tvarů listů a přesné barvy květů. V digitální fotografii dlouhou dobu chyběly kvalitní fotoaparáty kompaktních rozměrů, které byly navíc velmi drahé. Naštěstí rychlý vývoj technologií přinesl takové možnosti snímání, které jsou prakticky už na úrovni tradičních fotopřístrojů středního formátu., Vegetation and landscape documentation photography have special requirements for clear pictures with details of leaf shapes and flower colors. Hence for a long time in digital photography there was a lack of high quality compact cameras, which in any case were very expensive. Fortunately, rapid technological developments have provided options comparable with the middle-format cameras of the past., and Tomáš Kučera.
The Šumava Mts. and the neighbouring Bavarian Forest belong to the last areas in Central Europe, where large herbivorous mammals (Red Deer - Cervus elaphus, Roe Deer - Capreolus capreolus and European Moose - Alces alces) can find enough space for their food requirements and can coexist with their predator (Lynx - Lynx lynx). The activities and results of research project aimed at environmental issues related to these species using the up-to-date technologies (GPS telemetry, phototraps) are presented. and Pavel Šustr.