Numerous studies concerning the cardiovascular system in SHR often yield controversial data. The background of this diversity has various roots, ranging from different vascular segments or areas studied up to the different age of experimental animals. Our study aimed to follow the BP as an integrated response of vascular system. This approach was justified since stabilized cardiac output in SHR was proved till 1 year of age. The groups of male SHR (aged 3, 5, 9, 17 and 52 weeks) and age-matched Wistar rats were used. Significant basal BP difference between SHR and Wistar rats was found at 9 weeks of age and continued till the age of 52 weeks, reaching 189.6±11.9 mm Hg in SHR and 117.3±6.9 mm Hg in Wistar rats (P<0.01). The significant difference in BP increase to two doses of noradrenaline (0.1μg and 1 μg) between SHR and control rats was also found at the age of 9 weeks. At 52 weeks the BP increment to two doses of noradrenaline was in SHR 19.7±2.0 mm Hg and 60.5±3.9 mm Hg and in Wistar rats 7.4±1.9 mm Hg and 40.5±3.2 mm Hg (P<0.01). The hypotensive response to acetylcholine (0.1 μg, 1 μg and 10 μ) in SHR was enhanced at 17 weeks of age only and this amplification persisted till the age of 52 weeks. In 52-week-old SHR the hypotensive response to three doses was 69.9±10.2 mm Hg, 87.5±11.8 mm Hg and 103.4±10.6 mm Hg, while in Wistar rats it was 37.4 4.2 mm Hg P<0.0), 62.3±3.5 mm Hg (P<0.01) and 73.5±2.8 mm Hg (P<0.05). In conclusion, the efficiency of cardiovascular system of SHR to respond to noradrenaline was already enhanced from 9 weeks of age, whereas the response to acetylcholine was not augmented before the age of 17 weeks., M. Gerová, F. Kristek., and Obsahuje bibliografii a bibliografické údaje
The two i nferior colliculi (IC) are paired structures in the midbrain that are connected to each other by a bundle of commissural fibers. The fibers play an important role in coordinating sound signal processing between the two inferior colliculi. This study examined inter-collicular suppression on sound signal processing in amp litude domain of mice by measuring the rate-amplitude functions (RAFs) of neurons in one IC during the electrical stimulation of the opposite IC. Three types (monotonic, saturated and non-monotonic) RAFs of collicular neurons were measured before and durin g inter-collicular suppression. Inter-collicular suppression significantly increased the slope, decreased the dynamic range and narrowed down the responsive amplitude of all RAFs to high amplitude level but did not change the type of most (36/43, 84 % ) RAFs. As a result, all types of RAFs were compressed at a greater degree at low than at high sound amplitude during inter-collicular suppression. These data indicate that inter-collicular suppression improve sound processing in the high amplitude domain., Liang Cheng, Hui-Xian Mei, Yun Huang., and Obsahuje bibliografii
Catalase is an antioxidant enzyme the activity of which is crucial for the protection against damage caused by reactive oxygen species. The –262C>T polymorphism in the promoter region of catalase gene was found to be associated with altered catalase levels. In this study, peripheral blood mononuclear cells catalase activity was measured after H2 O2-induced oxidative stress. C/T and T/T genotypes were associated with the decrease of catalase levels in contrast to C/C donors who had elevated catalase activity in the presence of 0.4 and 0.7 mM H2 O2. Genotypedependent response of catalase activity to oxidative stress might be related to the predisposition of catalase mutant allele carriers to disorders mediated by oxidative stress., A. V. Komina, ... [et al.]., and Obsahuje seznam literatury
In a frog neuromuscular preparation of m. sartorius, glutamate had a reversible dose-dependent inhibitory effect on both spontaneous miniature endplate potentials (MEPP) and nerve stimulation-evoked endplate potentials (EPP). The effect of glutamate on MEPP and EPP is caused by the activation of metabotropic glutamate receptors, as it was eliminated by MCPG, an inhibitor of group I metabotropic glutamate receptors. The depression of evoked EPP, but not MEPP frequency was removed by inhibiting the NO production in the muscle by L-NAME and by ODQ that inhibits the soluble NO-sensitive guanylyl cyclase. The glutamate-induced depression of the frequency of spontaneous MEPP is apparently not caused by the stimulation of the NO cascade. The particular glutamate-stimulated NO cascade affecting the evoked EPP can be down-regulated also by adenosine receptors, as the glutamate and adenosine actions are not additive and application of adenosine partially prevents the further decrease of quantal content by glutamate. On the other hand, there is no obvious interaction between the glutamatemediated inhibition of EPP and inhibitory pathways triggered by carbacholine and ATP. The effect of glutamate on the evoked EPP release might be due to NO-mediated modulation (phosphorylation) of the voltage-dependent Ca2+ channels at the presynaptic release zone that are necessary for evoked quantal release and open during EPP production., S. Adámek ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Endothelin-1 (ET-1) and Nerve Growth Factor (NGF) are proteins, released from cancer-ridden tissues, which cause spontaneous pain and hypersensitivity to noxious stimuli. Here we examined the electrophysiological and behavioral effects of these two agents for evidence of their interactions. Individual small-medium cultured DRG sensory neurons responded to both ET-1 (50 nM, n=6) and NGF (100 ng/ml, n=4), with increased numbers of action potentials and decreased slow K+ currents; pre-exposure to ET-1 potentiated NGF´s actions, but not vice versa. Behaviorally, single intraplantar (i.pl.) injection of low doses of ET-1 (20 pmol) or NGF (100 ng), did not increase hindpaw tactile or thermal sensitivity, but their simultaneous injections sensitized the paw to both modalities. Daily i.pl. injections of low ET-1 doses in male rats caused tactile sensitization after 21 days, and enabled further tactile and thermal sensitization from low dose NGF, in ipsilateral and contralateral hindpaws. Single injections of 100 ng NGF, without changing the paw’s tactile sensitivity by itself, acutely sensitized the ipsilateral paw to subsequent injections of low ET-1. The sensitization from repeated low ET-1 dosing and the cross-sensitization between NGF and ET-1 were both significantly greater in female than in male rats. These findings reveal a synergistic interaction between cutaneously administered low doses of NGF and ET-1, which could contribute to cancer-related pain., A. Khodorova, Y. Zhang, G. Nicol, G. Strichartz., and Seznam literatury
ntestinal inflammation induced with dextran sodium sulfate (DSS) is used to study acute or chronic ulcerative colitis in animal models. Decreased gut tissue anti-inflammatory cytokine IL-10 concentration and mRNA abundance are associated with the development of chronic bowel inflammation. Twelve piglets of 3 days old were fitted with an intragastric catheter and randomly allocated into control and DSS groups by administrating either sterile saline or 1.25 g of DSS/ kg body weight (BW) in saline per day, respectively, for 10 days. Growth rate and food conversion efficiency were reduced (p<0.05) in the DSS piglets compared with the control group. Quantitative histopathological grading of inflammation in the jejunum and colon collectively showed that the DSS tr eatment resulted in 12 fold greater (p<0.05) inflammation severity scoring in the colon than in the jejunum, indicative of chronic ulcerative colitis in the colon. Upper gut permeability endpoint was 27.4 fold high er (p<0.05) in the DSS group compared with the control group. The DSS group had higher concentrations and mRNA abundances (p<0.05) of TNF - α and IL-6 in the jejunal and colonic tissues compared with the control group. Colonic concentration and mRNA abundanc e of IL-10 were reduced (p<0.05), however, jejunal IL-10 mRNA abundance was increased (p<0.05) in the DSS group compared with the control group. In conclusion , administration of DSS at 1.25 g/kg BW for 10 days respectively induced acute inflammation in th e jejunum and chronic inflammation and ulcerative colitis in the colon with substantially decreased colonic concentration and mRNA abundance of IL-10 in the young pigs, mimicking the IL-10 expression pattern in humans associated with chronic bowel inflamma tion., D. Lackeyram, D. Young, C. J. Kim, C. Yang, T. L. Archbold, Y. Mine, M. Z. Fan., and Obsahuje bibliografii
The aim of this study was to investigate the spectral characteristics of Purkinje cell interspike background activity caused by the occurrence of particular action potentials or by electrically induced enhancement of cerebellar inhibitory and excitatory input drive. Spontaneously active Purkinje neurons were extracellularly recorded in anesthetized rats before and after cessation of stimulation from the inferior olive (IO) or locus coeruleus (LC). After A/D conversion (30 kHz), direct spectral analysis of extracted interspike background activity was done. Our results have shown that, in contrast to simple spikes, the occurrence of complex spikes induces changes in the spectra of interspike background activity. The different spectral changes of interspike background activity induced by LC and IO stimulation also indicated the importance of this extracellularly recorded phenomenon., J. Šaponjic, M. Culic, B. Jankovic, A Jovanovic., and Obsahuje bibliografii
The interval model training has been more recommended to promote aerobic adaptations due to recovery period that enables the execution of elevated intensity and as consequence, higher workload in relation to continuous training. However, the physiological and aerobic capacity adaptations in interval training with identical workload to continuous are still uncertain. The purpose was to characterize the effects of chronic and acute biomarkers adaptations and aerobic capacity in interval and continuous protocols with equivalent load. Fifty Wistar rats were divided in three groups: Continuous training (GTC), interval training (GTI) and control (CG). The running training lasted 8 weeks (wk) and was based at Anaerobic Threshold (AT) velocity. GTI showed glycogen super-compensation (mg/100 mg) 48 h after training session in relation to CG and GTC (GTI red gastrocnemius (RG)=1.41±0.16; GTI white gastrocnemius (WG)=1.78±0.20; GTI soleus (S)=0.26±0.01; GTI liver (L)=2.72±0.36; GTC RG=0.42±0.17; GTC WG=0.54±0.22; GTC S=0.100±0.01; GTC L=1.12±0.24; CG RG=0.32±0.05; CG WG=0.65±0.17; CG S=0.14±0.01; CG L=2.28±0.33). The volume performed by GTI was higher than GTC. The aerobic capacity reduced 11 % after experimental period in GTC when compared to GTI, but this change was insignificant (19.6±5.4 m/min; 17.7±2.5 m/min, effect size = 0.59). Free fatty acids and glucose concentration did not show statistical differences among the groups. Corticosterone concentration increased in acute condition for GTI and GTC. Testosterone concentration reduced 71 % in GTC immediately after the exercise in comparison to CG. The GTI allowed positive adaptations when compared to GTC in relation to: glycogen super-compensation, training volume performed and anabolic condition. However, the GTI not improved the aerobic performance., G. G. de Araujo, C. A: Gobatto, M. Marcos-Pereira, I. G. M. Dos Reis, R: Verlengia., and Obsahuje bibliografii
Nanocarriers bearing anticancer drugs are promising candidates to improve the efficacy of cancer therapy and minimize side effects. The most potent cytostatics used in the treatment of various cancers are anthracyclines, e.g. doxorubicin or pirarubicin. Recently, polymer therapeutics carrying anthracyclines have been intensively studied. The precise characterization of in vitro nanocarrier biological behavior brings a better understanding of the nanocarrier characteristics and enables prediction of the behavior of the nanocarrier during in vivo application. Advanced fluorescence detection methods, e.g. fluorescence lifetime imaging microscopy (FLIM), were successfully exploited to describe the properties of various polymeric nano-systems and contributed to a complex view of anthracyclines’ intracellular transport and DNA intercalation. Here, we report the application of a specific technique for processing FLIM images, called fluorescence pattern decomposition, to evaluate early events after doxorubicin or pirarubicin treatment of cells. Moreover, we characterized changes in the intracellular localization and release of the anthracyclines during the incubation of cells with polymer nanotherapeutics based on poly[N-(2-hydroxypropyl)- methacrylamide] (pHPMA)., J. Panek, E. Koziolova, P. Stepanek, T. Etrych, O. Janouskova., and Obsahuje bibliografii