The ischemia and reperfusion of a jejunal graft during transplantation triggers the stress of endoplasmic reticulum thus inducing the synthesis of pro-inflammatory cytokines. Spreading of these signals stimulate immunological reactions in distal tissues, i.e. lung, liver and spleen. The aim of this study was to detect the molecular changes in liver and spleen induced by transplanted jejunal graft with one or six hours of reperfusion (group Tx1 and Tx6). Analysis of gene expression changes of inflammatory mediators (TNF-α, IL-10) and specific chaperones (Gadd153, Grp78) derived from endoplasmic reticulum (ER) was done and compared to control group. The qRT-PCR method was used for amplification of the specific genes. The levels of corresponding proteins were detected by Western blot with immunodetection. Protein TNF-α was in liver tissue significantly overexpressed in the experimental group Tx1 by 48 % (p<0.001). In the group Tx6 we found decreased levels of the same protein to the level of controls. However, the protein concentrations of TNF-α in spleen showed increased levels in group Tx1 by 31 % (p<0.001) but even higher levels in the group Tx6 by 115 % (p<0.001) in comparing to controls. Our data demonstrated that the spleen is more sensitive to posttransplantation inflammation than liver, with consequent stress of ER potentially inducing apoptosis and failure of basic functions of lymphoid tissue., P. Urban, M. Rabajdová, Š. Feterik, G. Bódy, T. Granda, M. Mareková, J. Veselá., and Obsahuje bibliografii
U pacientů, u kterých se manifestoval diabetes mellitus, dochází po měsících až desetiletích trvání choroby k vyhasnutí sekrece inzulinu, což je téměř jistým znamením úbytku B-buněk Langerhansových ostrůvků. U souboru 30 pacientů, u kterých se choroba manifestovala mezi 30–45 roky a byli diagnostikováni jako diabetici 2. typu, má po 30 letech trvání choroby polovina zachovanou nebo vyšší sekreci inzulinu, druhá polovina pak sekreci výrazně sníženou nebo vyhaslou. Faktory, které postihují B-buňky a vedou k jejich destrukci, můžeme shrnout do následujících skupin: 1. Faktory chemické: faktory metabolické: hyperglykemie a glukotoxicita, lipotoxicita, hypoxie, volné kyslíkové radikály, faktory farmakologické: anitimikrobiální prostředek pentamidin, antidepresiva typu SSRI, faktory spojené s poruchou sekrece inzulinu: MODY typy diabetu, toxické látky ze zevního prostředí: jed na krysy Vacor, streptozotocin, polychlorované či polybromované uhlovodíky 2. Onemocnění zevně sekretorické části pankreatu: nádorová infiltrace, vazivová infiltrace, chronická pankreatitida 3. Infekce, zánět a autoimunita: faktory virové: Coxsackie viry, virus chřipky H1N1, enteroviry, záněty: autoimunní faktory, představující patogenetický faktor diabetu 1. typu. V současné době pracujeme jak na další specifikaci dalších faktorů vedoucích k poškození B-buněk, tak na studiu poznání jejich účinku na buněčnou apoptózu respektive nekrózu, a konečně na definici ochranných faktorů, které by účinky působení těchto faktorů snížily. S nárůstem vědomostí o mechanizmech poškození a destrukce B-buněk se rýsují návrhy některých opatření, která by je mohla chránit. V našem přehledu podáváme zestručnělý a s ohledem na rozsah článku také notně zjednodušený přehled některých znalostí, které se poškození a destrukce B-buněk týkají. Klíčová slova: B-buňky Langerhansových ostrůvků pankreatu – faktory vedoucí k destrukcí B-buněk – sekrece inzulinu, Insulin secretion in patients with manifested diabetes mellitus tends to disappear months to decades after the diagnosis, which is a clear sign of a gradual loss of pancreatic islet beta-cells. In our sample of 30 type 2 diabetic patients, whose disease manifested between 30 and 45 years of age, about a half have retained or even increased insulin secretion 30 years later, while the other half exhibit a much diminished or lost insulin secretion. Factors that can damage or destroy beta-cells can be divided into the following groups: Metabolic factors: hyperglycemia and glucotoxicity, lipotoxicity, hypoxia, reactive oxygen species; Pharmacological factors: antimicrobial medication pentamidine, SSRI antidepressants; Factors related to impaired insulin secretion: MODY type diabetes; Environmental toxic factors: rat poison Vacor, streptozotocin, polychlorinated and polybrominated hydrocarbons; Disorders of the exocrine pancreas: tumor infiltration, fibrous infiltration, chronic pancreatitis, cystic fibrosis; Infections, inflammation, autoimmunity, viral factors: Coxsackie viruses, H1N1 influenza, enteroviruses. We are currently working on finding other factors leading to beta-cell damage, studying their effect on apoptosis and necrosis and looking for possible protective factors to prevent this damage. We our increasing knowledge about the mechanisms of beta-cell damage and destruction we come ever closer to suggest measures for their prevention. In this review we offer a brief and simplified summary of some of the findings related to this area. Key words: pancreatic islet beta-cells of Langerhans – factors damaging or destroying beta-cells – insulin secretion, and Michal Anděl, Vlasta Němcová, Nela Pavlíková, Jana Urbanová, Marie Čecháková, Andrea Havlová, Radka Straková, Livia Večeřová, Václav Mandys, Jan Kovář, Petr Heneberg, Jan Trnka, Jan Polák
Coccidiosis is a parasitic disease caused by protists (apicomplexans) of the genus Eimeria Schneider, 1875 and is considered to be the most important disease faced by rabbit breeders due to its high morbidity. In the present study, the antioxidant status and changes in apoptosis and in the expression of some genes were quantified in rabbits' ilea following infection with Eimeria intestinalis Cheissin, 1948. Rabbits, orally infected with 1 × 105 sporulated oocysts of E. intestinalis, started to shed oocysts in their faeces on 8 days post infection (dpi) and reached maximum excretion on 10 dpi, with approximately 5 million oocysts. This was accompanied by a significant decrease in the live body weight of infected rabbits. Also, malondialdehyde and nitric oxide were significantly increased while catalase and glutathione were significantly decreased in the ileum tissues of the infected rabbits. In addition, a significant increase was observed in the percentages of apoptotic cells in the ilea of the infected rabbits. Furthermore, interleukin-1β and interleukin-2 mRNA levels were significantly down-regulated and mRNA levels of interleukin-6, interferon gamma and inducible nitric oxide synthase were significantly up-regulated, while those of C-reactive protein remained unchanged. We conclude that infection with E. intestinalis induces oxidative stress, a significant increase in the percentage of apoptotic cells and a diverse and robust Th1 and Th1-related cytokine response in the ileum tissues., Heba M. Abdel-Haleem, Shawky M. Aboelhadid, Thabet Sakran, Gamal El-Shahawy, Huda El-Fayoumi, Saleh Al-Quraishy, Abdel-Azeem S. Abdel-Baki., and Obsahuje bibliografii
Through their receptors at each level of hypothalamo-pituitarygonadal axis glucocorticoid excess, either endogenous or administered or stress-induced, could affect steroid production in the testis and thus male fertility. The main ways by which glucocorticoids act are as follows: 1) Affecting gonadoliberin and LH synthesis and release through glucocorticoid receptors in hypothalamic neurons and pituitary gonadotropes. 2) By so far not clearly evidenced reduction of the number of LH receptors on the membrane of Leydig cells. 3) By affecting expression and function of steroidogenic enzymes in the testis. 4) By regulation of in situ access of glucocorticoid to its target cells in the testis. 5) By promotion Leydig cell apoptosis. The review provides a survey of physiological and molecular mechanisms staying behind these effects. It does not deal with the clinical effects of glucocorticoid treatment which would substantially exceed the scope of the pater., Richard Hampl, Luboslav Stárka., and Obsahuje bibliografii
We analyzed the immune response to gliadin in suckling rats and rats hand-fed with an artificial milk formula, an animal model of gluten enteropathy. Animals of both groups were intragastrically given either gliadin or albumin (control animals) or gliadin from birth till day 55. When compared to the controls, spleen lymphocytes from both groups of gliadin-treated rats cultivated in vitro exhibited a significant increase of spontaneous 3H-thymidine incorporation. Moreover, the proliferation of spleen and mesenteric lymph node (MLN) lymhocytes from both groups of gliadin-treated suckling and hand-fed rats was specifically increased by the in vitro gliadin challenge. Spleen B cells from gliadin-treated rats spontaneously produced higher amounts of gliadin-specific antibodies than those from the controls, however, in vitro stimulation by gliadin caused no further increase in antibody production. Apoptotic DNA fragmentation in MLN cells was higher in gliadin-treated rats than in albumin-treated ones, independently of the milk diet during the suckling period., H. Kozáková, R. Štěpánková, L. Tučková, M. Šinkora, L. Jelínková, H. Tlaskalová-Hogenová., and Obsahuje bibliografii
t would be desirable to expand the existing general knowledge concerning direct action of metals on the ovary. Nevertheless, the results of testing of iron compound on porcine ovarian cells should be interpreted carefully because iron is an essential element which could also induce changes in cellular processes. The aim of this in vitro study was 1) to examine dose-dependent effects of iron on the secretory activity of porcine ovarian granulosa cells, and 2) to outline the potential intracellular mediators mediating these effects. Specifically, we evaluated the effect of iron sulphate on the release of insulin-like growth factor I (IGF-I) and progesterone, as well as the expression of markers of proliferation (cyclin B1) and apoptosis (caspase-3) in porcine ovarian granulosa cells. Concentrations of IGF-I and progesterone were determined by RIA, cyclin B1 and caspase-3 expression by immunocytochemistry (ICC). Our results show a significantly decreased IGF-I secretion by ovarian granulosa cells after iron sulphate addition at the doses 0.5 and 1.0 mg/ml. The iron sulphate additions at do ses 0.17 and 1.0 mg/ml had no effect on progesterone secretion. In contrast, iron sulphate addition at doses 0.17-1.0 mg/ml resulted in stimulation of cyclin B1 and caspase-3 expression. In conclusion, the present results indicate a direct effect of iron on 1) secretion of growth factor IGF-I but not steroid hormone progesterone, 2) expression of markers of proliferation (cyclin B1), or 3) apoptosis (caspase-3) of porcine ovarian granulosa cells. These results support an idea that iron could play a regulatory role in porcine ovarian function: hormone release, prolif eration and apoptosis., A. Kolesarova ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
In contrast to the well-established anti-apoptotic effect of Bcl-2 protein, we have recently demonstrated that Bcl-2 overexpression by vaccinia virus causes apoptosis in BSC-40 cells, while it prevents apoptosis in HeLa G cells. Given the key role of mitochondria in the process of apoptosis, we focused on effects of Bcl-2 expression on mitochondrial energetics of these two cell lines. In this study we present data indicating that BSC-40 cells derive their ATP mainly from oxidative phosphorylation whereas HeLa G cells from glycolysis. More importantly, we show that in both cell lines, Bcl-2 inhibits mitochondrial respiration and causes a decrease of the ATP/ADP ratio. However, it appears that BSC-40 cells cannot sustain this decrease and die, while HeLa G cells survive, being adapted to the low ratio of ATP/ADP maintained by glycolysis. Based on this observation, we propose that the outcome of Bcl-2 expression is determined by the type of cellular ATP synthesis, namely that Bcl-2 causes apoptosis in cells relying on oxidative phosphorylation., M. Vrbacký, J. Krijt, Z. Drahota, Z. Mělková., and Obsahuje bibliografii
Steroid hormone 20-hydroxyecdysone and the sesquiterpenoid juvenile hormone are the main regulators of insect development; however, it is unclear how they interact in the regulation of metamorphic events. Using the silkworm, Bombyx mori, we show that the juvenile hormone analogue fenoxycarb affects the cascade of ecdysone regulated genes that control the programmed cell death in the larval midgut. Morphological changes that occur during cell death were investigated by studying cross-sections of the midgut stained with hematoxylin and eosin. Apoptosis-specific DNA fragmentation was detected using TUNEL assay. Expression patterns of genes ATG8 and ATG12, which were used as indicators of autophagy, and genes of the ecdysone-regulated gene cascade were examined using real-time quantitative polymerase chain reaction. Fenoxycarb application on day 0 of the 5th larval instar extended the feeding period and postponed programmed cell death in mature larval midgut. This effect was probably due to a delay in ecdysone secretion and associated changes in gene expression were mostly not a direct response to the fenoxycarb. However, differences in the gene expression patterns in the control and fenoxycarb treated insects during the prepupal and early pupal stages indicated that fenoxycarb may also exert a more direct effect on some genes of the ecdysone regulated gene cascade., Ebru Goncu, Ramazan Uranli, Osman Parlak., and Obsahuje bibliografii
Acute promyelocytic leukemia is characterized by a block of myeloid differentiation. The incubation of cells with 1 μmol/l all-trans retinoic acid (ATRA) for 72 h induced differentiation of HL-60 cells and increased the number of CD11b positive cells. Morphological and functional changes were accompanied by a loss of proliferative capacity. Differentiation caused by preincubation of leukemic cells HL-60 with ATRA is accompanied by loss of clonogenicity (control cells: 870 colonies/103 cells, cells preincubated with ATRA: 150 colonies/103 cells). D0 for undifferentiated cells was 2.35 Gy, for ATRA differentiated cells 2.46 Gy. Statistical comparison of clonogenity curves indicated that in the whole range 0.5-10 Gy the curves are not significantly different, however, in the range 0.5-3 Gy ATRA differentiated cells were significantly more radioresistant than non-differentiated cells. When HL-60 cells preincubated with 1 μmol/l ATRA were irradiated by a sublethal dose of 6 Gy, more marked increase of apoptotic cells number was observed 24 h after irradiation and the surviving cells were mainly in the G1 phase of the cell cycle, while only irradiated cells were accumulated in G2 phase. Our results imply that preincubation of cells with ATRA accelerates apoptosis occurrence (24 h) after irradiation by high sublethal dose of 6 Gy. Forty-eight hours after 6 Gy irradiation, late apoptotic cells were found in the group of ATRA pretreated cells, as determined by APO2.7 positivity. This test showed an increased effect (considering cell death induction) in comparison to ATRA or irradiation itself., M. Mareková, J. Vávrová, D. Vokurková, J. Psutka., and Obsahuje bibliografii
The effect of three therapeutically used drugs and five polyphenolic compounds on the mechanism of oxidative burst was compared in whole blood and isolated neutrophils at cellular and molecular level. In 10 μM concentration, the compounds investigated decreased the oxidative burst of whole blood in the rank order of potency: N-feruloylserotonin (N-f-5HT) > curcumin (CUR) > quercetin (QUER) > arbutin (ARB) > resveratrol (RES) > dithiaden (DIT) > carvedilol (CARV) > brompheniramine (BPA). The ratio between the percentage inhibition of extracellular versus intracellular chemiluminescence (CL) followed the rank order QUER > N-f-5HT > RES > CUR > DIT and is indicative of the positive effect of the compounds tested against oxidative burst of neutrophils, demonstrating suppression of reactive oxygen species extracellularly with minimal alteration of intracellular reactive oxygen species (ROS). Activation of protein kinase C was significantly decreased by DIT, CUR, QUER and N-f-5HT. CARV, DIT, QUER and ARB reduced activated neutrophil myeloperoxidase release more significantly compared with the effect on superoxide anion generation. All compounds tested increased the activity of caspase-3 in cell-free system. It is suggested that other regulatory mechanisms than protein kinase C might participate in the inhibition of neutrophil activation with the compounds tested. Different mechanisms are concerned in controlling the assembly of NADPH oxidase and the regulatory role of calcium ions is suggested. Compounds decreasing the amount of extracellular ROS generation, yet affecting but minimally intracellular ROS generation, are promising for further investigation in vivo., R. Nosáľ, K. Drábiková, V. Jančinová, T. Mačičková, J. Pečivová, T. Perečko, J. Harmatha, J. Šmidrkal., and Obsahuje bibliografii