Protein kinases, transcription factors and other apoptosis- and proliferation-related proteins can regulate reproduction, but their involvement in sexual maturation remains to be elucidated. The general aim of the in vivo and in vitro experiments with porcine ovarian granulosa cells was to identify possible intracellular regulators of female sexual maturation. For this purpose, proliferation (expression of proliferating cell nuclear antigen - PCNA, mitogen-activated protein kinases - ERK 1,2 related MAPK and cyclin B1), apoptosis (expression of the apoptotic protein Bax and apoptosis regulator Bcl-2 protein), expression of some protein kinases (cAMP dependent protein kinase - PKA, cGMPdependent protein kinase - PKG, tyrosine kinase - TK) and cAMP responsive element binding protein 1 (CREB-1) was examined in granulosa cells isolated from ovaries of immature and mature gilts. Expression of PCNA, ERK1,2 related MAPK, cyclin B1, Bcl-2, Bax, PKA, CREB-1, TK and PKG in porcine granulosa cells were detected by immunocytochemistry. Sexual maturation was associated with significant increase in the expression of Bcl-2, Bax, PKA, CREB-1 and TK and with decrease in the expression of ERK1,2 related MAPK, cyclin B1 and PKG in granulosa cells. No significant difference in PCNA expression was noted. The present data obtained from in vitro study indicate that sexual maturation in females is influenced by puberty-related changes in porcine ovarian signaling substances: increase in Bcl-2, Bax, PKA, CREB-1, TK and decrease in ERK1,2 related MAPK, cyclin B1 and PKG. It suggests that these signaling molecules could be potential regulators of porcine sexual maturation., A. Kolesarova, A. V. Sirotkin, M. Mellen, S. Roychoudhury., and Obsahuje bibliografii
Excessive production of oxygen free radicals has been regarded as a causative common denominator of many pathological processes in the animal kingdom. Hydroxyl and nitrosyl radicals represent the major cause of the destruction of biomolecules either by a direct reaction or by triggering a chain reaction of free radicals. Scavenging of free radicals may act preventively or therapeutically. A number of substances that preferentially react with free radicals can serve as scavengers, thus increasing the internal capacity/activity of endogenous antioxidants and protecting cells and tissues against oxidative damage. Molecular hydrogen (H2) reacts with strong oxidants, such as hydroxyl and nitrosyl radicals, in the cells, that enables utilization of its potential for preventive and therapeutic applications. H2 rapidly diffuses into tissues and cells without affecting metabolic redox reactions and signaling reactive species. H2 reduces oxidative stress also by regulating gene expression, and functions as an anti-inflammatory and anti-apoptotic agent. There is a growing body of evidence based on the results of animal experiments and clinical observations that H2 may represent an effective antioxidant for the prevention of oxidative stress-related diseases. Application of molecular hydrogen in situations with excessive production of free radicals, in particular, hydroxyl and nitrosyl radicals is relatively simple and effective, therefore, it deserves special attention., J. Slezák, B. Kura, K. Frimmel, M. Zálešák, T. Ravingerová, C. Viczenczová, Ľ. Okruhlicová, N. Tribulová., and Obsahuje bibliografii
Flavonoids, polyphenol derivatives of plant origin, possess a broad range of pharmacological properties. A number of studies have found both pro/anti-apoptotic effects for many of these compounds. For these reasons we investigated whether ProvinolsTM, flavonoids obtained from red wine, have anti-apoptotic properties. The investigations have been carried out in rats treated with Cyclosporine A (CsA). In particular, four groups of rats have been treated for 21 days with either olive oil (control group), with CsA, with ProvinolsTM, or with CsA and ProvinolsTM simultaneously. Oxidative stress, systolic blood pressure, body weight, biochemical parameters and different markers of pro/anti-apoptotic pathway were measured. CsA produced an increase of systolic blood pressure, a decrease in body weight, serum creatinine levels, urinary total protein concentration and creatinine clearance. Moreover, CsA induced renal alterations and the translocation of Bax and cytochrome c from cytoplasm to mitochondria and vice versa. These changes activated the caspase cascade pathway, that leads to morphological and biochemical features of apoptosis. ProvinolsTM restored morphological and biochemical alterations and prevented nephrotoxicity. In conclusion, this study may augment our current understanding of the controversial pro-/anti-apoptotic properties of flavonoids and their molecular mechanisms., R. Rezzani ... [et al.]., and Obsahuje seznam literatury
Coordinated regulation of apoptosis is critical for development, homeostasis, and immunity in larvae of Metazoa. We determined the full nucleotide sequence of an inhibitor of an apoptosis protein in a lepidopteran insect Mythimna separata (Walker) (MsIAP) and carried out functional analyses of the MsIAP. The full-length cDNA of MsIAP was 1642 bp, which encoded 379 amino acid residues with a calculated molecular mass of 41,834 Da, and two BIR domains and one RING domain revealed using amino acid sequence analysis. In addition, the sequences of these domains were similar to Drosophila IAP1 and those of some other lepidopteran insects. We carried out a functional analyses of MsIAP related to apoptosis regulation using RNA interference. The effects of MsIAP knockdown on adhering hemocytes and non-adhering hemocytes as controls were examined using Hoechst33342/propidium iodide staining, effector caspase activity and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) staining. A significantly higher number of propidium iodide and TUNEL-positive cells was recorded in adhering hemocytes from MsIAP knockdown larvae than from control larvae, but these differences were not recorded for non-adhering hemocytes. However, higher effector caspase activity was detected in both adhering and non-adhering hemocytes from MsIAP knockdown larvae compared to that in control larvae. These results indicate that the knockdown of MsIAP induces apoptosis in larval adhering hemocytes, which MsIAP negatively and non-redundantly regulate apoptosis, and that IAP function is conserved in M. separata and other insect species including Drosophila and several lepidopteran insects., Masashi Kamezaki, Kakeru Yokoi, Ken Miura., and Obsahuje bibliografii
Remodeled pulmonary arteries return to normal structural conditions after the increase in pulmonary artery flow resistance is reversed. We studied whether proteolysis of extracellular matrix proteins and apoptosis occur during reversal of remodeling produced by chronic hypoxia in the rat. Main pulmonary arteries were removed at different times during a 10-day period of exposure to 10% O2 and 14 days after return to air. Content and rates of degradation of collagen and elastin as well as immunoreactive collagenase in tissue and isolated mast cells were measured. Immunoblots for collagenase and tissue inhibitor of metalloproteinases (TIMP) were performed. Apoptosis was assessed by cleavage of DNA and TUNEL assay. Excess collagen and elastin present at 10 days of hypoxia decreased to near normal levels after 3-5 days of air. Transient increases in collagenolytic and elastolytic enzyme activities accompanied the rapid decrease in matrix proteins. Mast cells containing collagenase accumulated in remodeled pulmonary arteries, and the active form of collagenase appeared at the time of peak proteolytic activity. TIMP increased during remodeling. Apoptosis was maximal 3 days after return to air. Our results suggest that activation of enzymes, which degrade matrix proteins, and apoptosis play a role in resolution of vascular remodeling., D. J. Riley, S. Thakker-Varia, F. J. Wilson, G. J. Poiani, C. A. Tozzi., and Obsahuje bibliografii
The aim of our study was to test the in fluence of short exposure (6 h) of preimplantation rabbit embryos to elevated temperatures (41.5 ºC or 42.5 ºC) in vitro on their developmental capacity. Fertilized eggs recovered from female oviducts at the pronuclear stage (19 hpc) were cultured at standard temperature (37.5 ºC) until the morula stage (72 hpc). Afterwards, the embryos were divided into two groups, cultured for 6 h either at hyperthermic (41.5 ºC or 42.5 ºC) or standard temperature (control 37.5 ºC), post-incubated overnight (16-20 h) at 37.5 ºC and then evaluated for developmental stages, apoptosis (TUNEL), proliferation (cell number), actin cytoskeleton and presence of heat-shock proteins Hsp70. It was observed that hyperthermia at 41.5 ºC did not alter progression of embryos to higher preimplantation stages (expanded and hatching/hatched blastocysts), rate of apoptosis, total cell number of blastocysts and structure of actin filament compared to 37.5 ºC. We stern-blotting revealed the presence of heat stress-induced 72 kDa fraction of Hsp70 proteins in granulosa cells (exposed to 41 ºC) and embryos (exposed to 41.5 ºC). Following the elevation of temperature to 42.5 ºC embryo development was dramati cally compromised. The embryos were arrested at the morula or early blastocyst stage, showed an increased rate of apoptosis and decreased total cell number compared to control. The structure of actin filaments in most of blastomeres was damaged and such blastomeres often contained apoptotic nuclei. In this group a presence of heat-stress-induced fraction of Hsp70 proteins had not been confirmed. This is the first report demonstrating a threshold of thermotolerance of rabbit preimplantation embryos to hyperthermic exposure in vitro. A detrimental effect of higher temperature on the embryo is probably associated with the loss of their ability to produce Hsp70 de novo, which leads to cytoskeleton alterations and enhanced apoptosis., A. V. Makarevich, L. Olexiková, P. Chrenek, E. Kubovičová, K. Fréharová, J. Pivko., and Obsahuje bibliografii a bibliografické odkazy
In vitro models serve as a tool for studies of steatosis. Palmitic and oleic acids can induce steatosis in cultured hepatocytes. The aim of our study was to verify steatogenic and cytotoxic effects of palmitic acid (PA), oleic acid (OA) and their combinations as well as their impact on functional capacity of rat primary hepatocytes. Hepatocytes were exposed to OA or PA (0.125-2 mmol/l) or their combination at ratios of 3:1, 2:1 or 1:1 at the final concentrations of 0.5-1 mmol/l. Both OA and PA caused a dose-dependent increase in triacylglycerol content in hepatocytes. PA was more steatogenic at 0.25 and 0.5 mmol/l while OA at 0.75 and 1 mmol/l. PA exhibited a dose-dependent cytotoxic effect associated with ROS production, present markers of apoptosis and necrosis and a decrease in albumin production. OA induced a damage of the cytoplasmic membrane from 1 mM concentration. Mixture of OA and PA induced lower cytotoxicity with less weakened functional capacity than did PA alone. Extent of steatosis was comparable to that after exposure to OA alone. In conclusion, OA or combination of OA with PA is more suitable for simulation of simple steatosis than PA alone., A. Moravcová, Z. Červinková, O. Kučera, V. Mezera, D. Rychtrmoc, H. Lotková., and Obsahuje bibliografii
a1_We investigated the potential neuroprotective effect of transient hypertension on neuronal cell death induced by ischemia-reperfusion. Recovery of neurons, terminally differentiated cells, is almost entirely dependent upon active transcription and repair of DNA damage. We focused on the histochemical detection of distribution of NOR (argyrophylic nucleolar proteins) reflecting nucleolar integrity, immunohistochemical detection of PARP-1 (poly(ADP-ribose) polymerase-1), MADD (mitogen-activated death domain), a protein accumulated in nucleoli upon stimulation by ischemia, the active form of caspase-3, a universal proteolytic enzyme of apoptosis. The terminal deoxynucleotidyl-transferase (TdT)-mediated dUTP-biotin nick-end-labeling method (TUNEL) proved the presence of in situ DNA fragmentation. We used the model of transient focal cerebral ischemia in rats with occlusion of middle cerebral artery. In experimental group of rats, the transient hypertension was induced by constriction of the abdominal aorta. The period of ischemia lasted 15, 30, 60 and 120 min followed by 48 h of reperfusion. We examined the frontal lobe of the ipsilateral hemisphere for apoptosis of neurons and compared it with the intact brain tissue. In normotensive rats with transient focal cerebral ischemia, we found disintegrated nucleoli of cortical as well as subcortical neurons at all investigated periods of ischemia, whereas the neurons of intact animals showed compact nucleoli with a few satellites. Nuclear positivity for MADD and PARP-1 was apparent in the neocortex after 15 min and peaked after 30 min of ischemia. On the other hand, the subcortical neurons showed nuclear positivity after 60 and 120 min. The immunohistochemical reaction for active caspase 3 was apparent after 30 min onwards predominantly in the cortex. The TUNEL staining was distinct after 60 and 120 min., a2_In hypertensive rats, we found nucleolar disintegration, positivity for MADD, PARP-1 and caspase 3 after 30 min cortically and subcortically, followed by TUNEL positive staining of cortical neurons after 60 and 120 min. In summary, we detected delayed activation of neuronal apoptosis in transiently hypertensive rats with focal cerebral ischemia compared to normotensive animals. The apoptotic phenotype was confirmed by a panel of complementary methods showing rapid proteolysis-nucleolar segregation, MADD, PARP-1 and caspase-3 positivity as well as ultimate DNA fragmentation proved by the TUNEL assay., M. Smrčka, M. Horký, F. Otevřel, Š. Kuchtíčková, V. Kotala, J. Mužík., and Obsahuje bibliografii
Ulinastatin [or called as urinary trypsin inhibitor (UTI)] plays a role in regulating neurological deficits evoked by transient cerebral ischemia. However, the underlying mechanisms still need to be determined. The present study was to examine the effects of UTI on autophagy, Nrf2-ARE and apoptosis signal pathway in the hippocampus in the process of neurological functions after cerebral ischemia using a rat model of cardiac arrest (CA). CA was induced by asphyxia followed by cardiopulmonary resuscitation (CPR) in rats. Western blot analysis was employed to determine the expression of representative autophagy (namely, Atg5, LC3, Beclin 1), p62 protein (a maker of autophagic flux), and Nrf2-ARE pathways. Neuronal apoptosis was assessed by determining expression levels of Caspase-3 and Caspase-9, and by examining terminal deoxynucleotide transferase-mediated dUTP nick-end labeling (TUNEL). The modified neurological severity score (mNSS) and spatial working memory performance were used to assess neurological deficiencies in CA rats. Our results show that CA amplified autophagy and apoptotic Caspase-3/Caspase-9, and downregulated Nrf2-ARE pathway in the hippocampus CA1 region. Systemic administration of UTI attenuated autophagy and apoptosis, and largely restored Nrf2-ARE signal pathway following cerebral ischemia and thereby alleviated neurological deficits with increasing survival of CA rats. Our data suggest that UTI improves the worsened protein expression of autophagy and apoptosis, and restores Nrf2-ARE signals in the hippocampus and this is linked to inhibition of neurological deficiencies in transient cerebral ischemia. UTI plays a beneficial role in modulating neurological deficits induced by transient cerebral ischemia via central autophagy, apoptosis and Nrf2-ARE mechanisms., Xiao-Ming Jiang, Jing-Hai Hu, Lu-Lu Wang, Chi Ma, Xu Wang, Xiao-Liang Liu., and Obsahuje bibliografii