The Theobroma lethal character Luteus-Pa segregates in a 3:1 ratio, expresses in recessive homozygosis, initially inducing leaf chlorosis and finally provoking seedlings death. The objective of this work was to evaluate gas exchange, chlorophyll fluorescence emission, chemical composition and oxidative stress of wild and mutant seedlings resulting from the crosses Pa 30 × Pa 169 and its reciprocal, aiming to elucidate the seedlings death induced by Luteus-Pa. At 15 day after emergence (DAE) differences began to appear between the wild type and mutant. Mutant seedlings showed: (1) lack of photosynthesis and alterations in chloroplast morphology; (2) lower level of three abundant groups of proteins in leaves; (3) decrease in the content of chloroplastidic pigments (4) decrease in peroxidases activities and increase in leaf polyphenol oxidase activity; (5) decrease in carbohydrate and concentration of some nutrients and low dry mass in all plant parts. In leaves of mutant seedlings of both crosses damages occurred in the system responsible for the photochemical phase of photosynthesis. Variations in growth parameters and subsequent seedling death up to 60 DAE were related to exhaustion of cotyledonary reserves, inactive photosynthetic apparatus and oxidative stress. and B. C. Rehem ... [et al.].
In view of predicted climatic changes for the Mediterranean region, study of high temperature and drought impacts on physiological responses of endangered species regains relevance. In this context, micropropagated plants of Tuberaria major, a critically endangered species, endemic of Algarve, were transferred to a controlled-environment cabinet with day/night temperatures set at 25/18°C (Reference) or 32/21°C (HT). After 15 days of HT acclimation, some plants were subjected to progressive drought followed by rewatering. The enhancement of temperature alone did not affect water relations and photosynthetic rates (PN) but the stomatal conductance (gs) exhibited a 3-fold increase in comparison with reference plants. The maximum quantum yield of photosystem (PS) II (Fv/Fm), the effective quantum yield of PSII photochemistry (ΦPSII), carotenoid (Car) and anthocyanin content enhanced, whereas the quantum yields of regulated (ΦNPQ) and nonregulated (ΦNO) energy dissipation decreased. Drought combined with HT reduced predawn leaf water potential to values of about -1.3 MPa, which had adverse effects on gas exchange and PSII activity. Values of PN and gs were 71 and 79% lower than those of HT plants. An impairment of photochemical activity was also observed: the decrease in ΦPSII and the increase of ΦNPQ. However, an irreversible photoinhibitory damage had not occurred. Carotenoid and anthocyanin content remained elevated and soluble sugars (SS) increased twice, whereas proline and MDA accumulation was not detected. On the first 24 h after water-stress relief, gs, PN, ΦPSII, and ΦNPQ did not recover, but SS returned to the reference level. Overall, T. major acquired an adequate capacity for a protection against the development of oxidative stress during drought and water recovery under HT. These findings suggest that T. major is prepared to deal with predicted climate changes., M. L. Osório, J. Osório, A. Romano., and Obsahuje bibliografii
A field experiment involving two planting densities (83,333 and 166,666 plants per ha), two cropping systems (monoculture and mixed culture) and five cowpea [Vigna unguiculata L. (Walp.)] genotypes was conducted at Nietvoorbij (33°54S, 18°14E), Stellenbosch, South Africa, to select cowpea material with superior growth and water-use efficiency (WUE). The results showed significantly higher photosynthetic rates, stomatal conductance and transpiration in leaves of plants at low density and in monoculture due to greater chlorophyll (Chl) levels relative to those at high density and in mixed culture. As a result, C concentration in leaves and the amount of C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B accumulated in shoots at low density and under monoculture were also much higher. Even though no marked differences in photosynthetic rates were found between and among the five cowpea genotypes, leaf C concentration and shoot C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B contents differed considerably, with Sanzie exhibiting the highest C concentration and C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B contents in shoots, followed by Bensogla and Omondaw, while ITH98-46 and TVu1509 had the lowest shoot concentration and contents of C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B. WUE (calculated as photosynthate produced per unit water molecule transpired) was significantly greater in plants at low density and monoculture relative to those at high density and in mixed culture. Isotopic analysis revealed significant differences in δ13C values of sorghum [Sorghum bicolor L. (Moench.)] and cowpea, with higher δ13C values being obtained for plants at low density and in monoculture relative to those at high density or in mixed culture. The five cowpea genotypes also showed significant differences in δ13C values, with Sanzie exhibiting the most negative value (i.e. low WUE) and ITH98-46, the least negative δ13C value (i.e. high WUE). Whether measured isotopically or from gas-exchange studies, sorghum (a C4 species) exhibited much higher WUE relative to cowpea (a C3 species). Both correlation and regression analyses revealed a positive relationship between WUE from gas-exchange studies and δ13C values from isotopic analysis of cowpea and sorghum shoots. and J. H. J. R. Makoi, S. B. M. Chimphango, F. D. Dakora
The relationship between light-saturated photosynthetic capacity
(Pmax) and leaf nitrogen (N) content was investigated for one year in a 15-year-old Chamaecyparis obtusa canopy and was compared with a Cryptomeria japonica canopy previously described. The linear regression between P max and leaf N content tended to converge toward a single line segment from July to January and in May for C. obtusa. The slope of the linear regression between Pmax and leaf N content of C. obtusa was gentler than that of C. japonica. The smaller regression coefficient of C. obtusa may reflect species differences in nitrogen nutrition requirements between C. obtusa and C. japonica. A pronounced decrease in the slope of the linear regression lines due to low temperature was observed in February and March. During this period, P max of C. obtusa declined more than that of C. japonica suggesting that C. obtusa is less tolerant to low temperatures than C. japonica., H. Kobayashi, S. Inoue, and K. Gyokusen., and Obsahuje bibliografii
Syntrichia caninervis Mitt. is the dominant species in the moss crusts of the Gurbantunggut Desert, Northwestern China. We experimented with this species under controlled environmental conditions. Modulated chlorophyll (Chl) fluorescence was used to test the speed of recovery as evidenced by the time course of photosynthetic activity following remoistening. Transmission electron microscopy was used to explore the cytological characteristics of the leaf cells. Minimum and maximum fluorescence (F0 and FM) and photosynthetic yield (FV/FM) of photosystem II (PSII) recovered quickly when shoots were remoistened in the dark. This was especially the case of FV/FM; within the first minute of remoistening this reached 90% or more of the value attained after 30 min. These physiological changes were closely paralleled by cytological changes that indicated no damage to membranes or organelles. Correlation analysis showed that Chl fluorescence decreased both above and below a narrow moisture optimum. Our results underline the capability of S. caninervis to photosynthesize after remoistening. Utilizing precipitation events such as dew, fog, rain, and melting snow allows S. caninervis to survive and grow in a harsh desert environment. and J. Zhang ... [et al.].
Water and nitrogen (N) deficiency are two major constraints limiting the yield and quality of many oilseed crops worldwide. This study was designed to assess the response of Camelina sativa (L.) Crantz to the availability of N and water resources on photosynthesis and yield parameters. All the measured variables, which included plant height, root and shoot dry matter, root:shoot ratio, xylem pressure potential (XPP), yield components, photosynthetic parameters, and instantaneous water-use efficiency (WUE) were remarkably influenced by water and nitrogen supply. Net photosynthetic rate (PN) and yield components were significantly decreased more by water deficit than by N deficiency. XPP, stomatal conductance (gs), and intercellular CO2 concentration (C i) decreased substantially as the water deficit increased irrespective of the level of N application. WUE at the high N supply [100 and 150 kg(N) ha-1] dropped in a large degree as the increased water deficit due to a larger decrease in PN than transpiration rate (E). The results of this study suggest that the regulative capacity of N supply on photosynthetic and plant growth response is significantly affected by soil water status and C. sativa is more sensitive to water deficit than N supply. and X. Pan ... [et al.].
The study was carried out in a four-year-old super-high density olive grove in Central Italy to compare leaf gas exchanges of Spanish Arbequina and Italian Maurino olive cultivars. Overall, from mid July to mid November, Maurino had a slightly higher maximum
light-saturated net photosynthetic rate (PNmax) than Arbequina. The lowest and the highest PNmax values were recorded at the end of July and in mid November, respectively. Current-season leaves showed similar or slightly higher PNmax values than one-year-old leaves. During the day Maurino always had slightly higher values or values similar to Arbequina, with the highest PNmax being in the morning. Maurino had similar or higher dark respiration rate (RD) values compared to Arbequina. During the day, in both cultivars the RD was lower at 9:00 than in the afternoon. The pattern of the photosynthetic irradiance-response curve was similar in the two genotypes, but the apparent quantum yield (YQ) was higher in Maurino. In both cultivars intercellular CO2 concentration (Ci) tended to increase when PNmax decreased. The increase in Ci corresponded to a decrease in stomatal conductance (gs). The transpiration rate (E) increased from mid July to the beginning of August, then decreased in September and increased again in November. Particularly in the morning, the current-season leaves showed similar or slightly higher E values than the one-year-old leaves. During the day, in both cultivars and at both leaf ages, E was higher in the afternoon. No effects on leaf gas exchanges due to the presence or absence of fruit on the shoot were found. Overall, there was satisfactory physiological adaptation for Arbequina to the conditions of Central Italy and for Maurino to the superintensive grove conditions., P. Proietti, L. Nasini, and L. Ilarioni., and Obsahuje bibliografii
Photosynthetic rate (PN), SPAD value, specific leaf area (SLA), flag leaf area (FLA), and nitrogen content (LN) of genus Oryza were investigated and their correlation was analyzed to assess some of the main photosynthetic traits among different species in the genus Oryza. The results revealed wide variation in these traits. The species O. rufipogon and O. australiensis exhibited maximum photosynthetic rate. Comparison of different types of genomes (diploid: 2n=2x=24; tetraploid: 2n=4x=48) and growth habit (shade- or sun-grown) showed the species of diploid (with genome symbol EE; 2n=2x=24) genomes, with perennial and sun-grown species, had high apparent photosynthesis compared to others. The species with BB/BBCC, shade-grown and the tetraploids showed high SPAD value, and the flag leaf in sun-grown species and diploids were thicker (low SLA) compared with others. However, no significant difference could be noticed among the different types of genomes. Higher leaf area was noticed among the species of CC/CCDD genome, perennial shade-grown species and tetraploids than in others. The variety IR 36 exhibited highest leaf nitrogen concentration. Correlation analysis showed a strong relationship between PN and leaf nitrogen concentration while no marked relationships were observed among other characteristics. It implies that the species with thick and small leaves with high nitrogen concentration and high photosynthesis evolved better than others. O. rufipogon, with the same genome as O. sativa, could be one of the wild rice resources for elite crop improvement. and M. Zhao ... [et al.].
In order to investigate the effect of chromosome doubling on ozone tolerance, we compared the physiological responses of a diploid honeysuckle (Lonicera japonica Thunb.) and its autotetraploid cultivar to elevated ozone (O3) exposure (70 ng g-1, 7 h d-1 for 31 d). Net photosynthetic rate (PN) of both cultivars were drastically (P<0.01) impaired by O3. Although there were significantly positive correlation between PN and stomatal conductance (gs) in both cultivars under each treatment, the decreased gs in O3 might be the result rather than the cause of decreased P N as indicated by stable or increasing the ratio of intercellular to ambient CO2 concentration(Ci/Ca). PN under saturating CO2 concentration
(PNsat) and carboxylation efficiency (CE) significantly decreased under O3 fumigation, which indicated the Calvin cycle was impaired. O3 also inhibited the maximum efficiency of photosystem II (PSII) photochemistry in the dark-adapted state (Fv/Fm), actual quantum yield of PSII photochemistry (ΦPSII), electron transport rate (ETR), photochemical quenching coefficient (qP), non-photochemical quenching (NPQ), the maximum in vivo rate of Rubisco carboxylation (Vcmax) and the maximal photosynthetic electron transport rate (Jmax) which demonstrated that the decrease in PN of the honeysuckle exposed to elevated O3 was probably not only due to impairment of Calvin cycle but also with respect to the light-harvesting and electron transport processes. Compared to the diploid, the tetraploid had higher relative loss in transpiration rate (E), (gs), (PNsat), Vcmax and Jmax. This result indicated that the Calvin cycle and electron transport in tetraploid was damaged more seriously than in diploid. A barely nonsignificant (P=0.086) interaction between O3 and cultivar on PN suggested a higher photosynthetic sensitivity of the tetraploid cultivar. and L. Zhang ... [et al.].
Responses of leaf gas exchange, fluorescence emission, chlorophyll concentration, and morpho-anatomical features to changes in photosynthetic photon flux density (PPFD) were studied in three wild ornamental species of Passiflora L. to select sun and shade species for landscaping projects. Artificial shade was obtained with different shading nylon nets, under field conditions, which allowed the reduction of 25, 50, and 75% of global radiation, along with a control treatment under full sunlight. For Passiflora morifolia the highest mean values of light-saturated net photosynthetic rate (PNmax) and light compensation point (LCP) were observed at 50 and 25% shade, respectively, while the highest values of dark respiration rate (RD) and apparent quantum yield (α) were observed at 75% shade. For Passiflora suberosa litoralis the highest value of P max was observed at full sunlight. The highest mean values for Pmax, RD, and LCP for Passiflora palmeri var. sublanceolata were obtained at 25% shade. The highest values of net photosynthetic rate (PN) for P. morifolia, P. palmeri var. sublanceolata, and P. suberosa litoralis were 21.09, 16.15, and 12.36 μmol(CO2) m-2 s-1, observed at 50 and 75% shade and full sunlight, respectively. The values of the minimal chlorophyll fluorescence (F0) were significantly different in P. suberosa litoralis and P. palmeri var. sublanceolata, increasing with the increase of the irradiance. In contrast, the values of maximum photochemical efficiency of PSII (Fv/Fm) were significantly different only in P. suberosa litoralis, being higher at 75%, progressively reducing with the increase of PPFD levels. The total concentration of chlorophyll (Chl) was higher in shaded plants than in the ones cultivated in full sunlight. On the other hand, the values of Chl a/b ratio were reduced in shaded plants. A significant effect of shade levels on leaf area (LA) and specific leaf area (SLA) was found for the three species, whose highest mean values were observed at 75% shade. The thickness of foliar tissues was significantly higher for the three species at full sunlight and 25% shade. These results suggested that P. morifolia and P. palmeri var. sublanceolata appeared to be adapted to moderate shade conditions. P. suberosa litoralis presented higher plasticity to greater variation of the irradiance levels, while the photoinhibition was one of the limiting factors for this species at full sunlight. and M. V. Pires ... [et al.]