Peritoneal dialysis (PD) is a well established method of depuration in uremic patients. Standard dialysis solutions currently in use are not biocompatible with the peritoneal membrane. Studying effects of dialysate on peritoneal membrane in humans is still a challenge. There is no consensus on the ideal experimental model so far. We, therefore, wanted to develop a new experimental non-uremic rabbit model of peritoneal dialysis, which would be practical, easy to conduct, not too costly, and convenient to investigate the long-term effect of dialysis fluids. The study was done on 17 healthy Chinchilla male and female rabbits, anesthetized with Thiopental in a dose of 0.5 mg/kg body mass. A catheter, specially made from Tro-soluset (Troge Medical GMBH, Hamburg, Germany) infusion system, was then surgically inserted and tunneled from animals' abdomen to their neck. The planned experimental procedure was 4 weeks of peritoneal dialysate instillation. The presented non-uremic rabbit model of peritoneal dialysis is relatively inexpensive, does not require sophisticated technology and was well tolerated by the animals. Complications such as peritonitis, dialysis fluid leakage, constipation and catheter obstruction were negligible. This model is reproducible and can be used to analyze the effects of different dialysis solutions on the rabbit peritoneal membrane., S. Zunic-Bozinovski, Z. Lausevic, S. Krstic, N. Jovanovic, J. Trbojevic-Stankovic, B. Stojimirovic., and Obsahuje bibliografii a bibliografické odkazy
Non-surgical management of aortic valve disease has been given considerable attention. Several recent publications have already reported its use in clinical practice. The main issue is to get an understanding of the pathophysiological processes and, most importantly, extensive experimental activity. In addition to testing various animal models, technical and material aspects are also being intensively investigated. It is not clear yet whether the durability and applicability of this promising development will be comparable with the standard of current cardiac surgery. Nonetheless, even the use of some models as a temporary approach helping to improve the circulatory status, not allowing safe surgery, is certainly justified. At any rate, a new stage of research and clinical application has been set off. However, experimental background continues to be simply indispensable. The paper is a short review of the issue., J. Šochman, J. H. Peregrin., and Obsahuje bibliografii a bibliografické odkazy
The aim of the Center is to focus on selected branches of basic research in developmental biology, biocompatible polymer synthesis, neuroscience and transplant surgery into one organic whole. This scan serve as an experimental foundation for cell therapy and tissue repair research on a level qualitatively comparable to research in the developed countries of the EU and the USA. and Eva Syková.
The activity of lipoprotein lipase (LPL) is increased after alcohol consumption and can contribute to an increased level of HDL-cholesterol, which is considered to play a key role in the ethanol-mediated protective effect against cardiovascular disease. The increase in HDL-cholesterol concentration can be also due to an ethanol-enhanced synthesis and secretion of apolipoprotein A-I (apo A-I) from hepatocytes. Therefore, the hypothesis that ethanol consumption affects the LPL and apo A-I gene (LPL and APOA1, respectively) expression was tested in male C57BL/6 mice drinking 5 % ethanol or water and fed a standard chow or high-fat (HF) diet for 4 weeks. The LPL expression was determined in the heart, epididymal and dorsolumbal adipose tissues, the APOA1 expression in the liver. Alcohol consumption did not affect lipid and lipoprotein concentrations in the serum. The LPL expression was increased in the heart of mice given ethanol and HF diet compared to mice on chow and ethanol (p<0.001) and was also increased in epididymal fat in mice given ethanol and HF diet compared to mice on water and HF diet (p<0.05). Neither LPL expression in dorsolumbal fat nor APOA1 expression in the liver were affected by ethanol consumption. Our data suggest that ethanol consumption upregulate LPL expression in a tissue- and diet-dependent manner., E. Mudráková, J. Kovář., and Obsahuje bibiografii a bibliografické odkazy
Lipoprotein lipase (LPL) is a key factor determining the clearance of triglycerides from the circulation. The enzyme activity is tissue-specifically regulated by insulin, but it is not clear yet how insulin regulates the total LPL activity in the circulation. To answer such question, we measured LPL activity using the intravenous fat tolerance test (IVFTT) that was carried out 1 h before as well as 2 h and 4 h after oral administration of glucose (75 g) in eleven healthy male volunteers. In control experiments, no glucose was given to the subjects. Glucose administration resulted in an expected increase in plasma glucose and insulin and in a suppression of non-esterified fatty acid concentration. The LPL activity assessed in IVFTT as a k2 rate constant did not change in control experiments and decreased to 78 % and 73 % of baseline values 2 h and 4 h after glucose administration, respectively (p=0.01). Similarly, LPL activity measured in the plasma after intravenous injection of heparin at the end of the experiments was 16 % lower (p<0.05) after glucose administration. In conclusion, LPL activity is already downregulated in vivo 2 h after glucose administration. The results of our study indicate that repeated IVFTT is a promising approach for studying acute changes in LPL activity., E. Jindřichová, S. Kratochvílová, J. Kovář., and Obsahuje bibliografii a bibliografické odkazy
Flavin7 (F7) is a nutritional supplement often taken by cancer patients in Central Europe during chemo- and radiation therapy. In this study, investigation of the antiproliferative and antiangiogenic activities of this supplement were performed. Flavin7 showed antiprolif erative activity in Jurkat as well as in HeLa cells. It significantly reduced the growth of both cancer cell lines at the doses of 200 μg/ml to 20 μg/ml (p<0.001 and p<0.01, respectively). In F7-treated Jurkat cells we found a significant increase in the fraction of cells with sub-G0/G1 DNA content, which is considered to be a marker of apoptotic cell death. Apoptosis was also confirmed by annexin V staining and DNA fragmentation. Furthermore, F7 at the doses of 100 μg/ml to 4 μg/ml inhibited endothelial cell migration and capillary tube formation what indicates its potential antiangiogenic properties. Flavin7 also inhibited the activity of matrix metalloproteinases (MMPs), preferentially MM P-9, at the doses of 100 μg/ml to 4 μg/ml. Our data suggest that F7 possesses marked antiproliferative and antiangiogenic properties in vitro. Further research is needed to elucidate also its in vivo activities., J. Mojžiš, M. Šarišský, M. Pilátová, V. Voharová, L. Varinská, G. Mojžišová, A. Ostro, P. Urdzík, R. Dankovčik, L. Mirossay., and Obsahuje bibliografii a bibliografické odkazy
Production of superoxide anions in the incubation medium of hippocampal slices can induce long-term potentiation (LTP). Other reactive oxygen species (ROS) such as hydrogen peroxide are able to modulate LTP and are likely to be involved in aging mechanisms. The present study explored whether intracerebro-ventricular (ICV) injection of oxidant or antioxidant molecules could affect LTP in vivo. With this aim in mind, field excitatory post-synaptic potentials (fEPSPs) elicited by stimulation of the perforant pathway were recorded in the dentate gyrus of the hippocampal formation in urethane-anesthetized rats. N-acetyl-L-cysteine, hydrogen peroxide (H2O2) or hypoxanthine/xanthine-oxidase solution (a superoxide producing system) were administrated by ICV injection. The control was represented by a group injected with saline ICV. Ten minutes after the injection, LTP was induced in the granule cells of the dentate gyrus by high frequency stimulation of the perforant pathway. Neither the H2O2 injection or the N-acetyl-L-cysteine injection caused any variation in the fEPSP at the 10-min post-injection time point, whereas the superoxide generating system caused a significant increase in the fEPSP. Moreover, at 60 min after tetanic stimulation, all treatments attenuated LTP compared with the control group. These results show that ICV administration of oxidant or antioxidant molecules can modulate LTP in vivo in the dentate gyrus. Particularly, a superoxide producing system can induce potentiation of the synaptic response. Interestingly, ICV injection of oxidants or antioxidants prevented a full expression of LTP compared to the saline injection., A. Viggiano, E. Viggiano, M. Monda, A. Viggiano, S. Ascione, S. Amaro, B. de Luca., and Obsahuje bibliografii a bibliografické odkazy
Regenerativní medicína představuje dynamicky se rozvíjející medicínský obor. Jako kostru při náhradě poškozených orgánů využívá nové biomateriály, nanotechnologie, růstové faktory a cytokiny, jež podporují regeneraci organismu, a pochopitelně též kmenové buňky. Kombinace těchto moderních metod poskytuje naději nejen pro léčbu onemocnění, které v současnosti neumíme léčit ani farmakoterapií ani transplantací, ale rovněž na prodloužení života a zlepšení jeho kvality ve stáří. Výzkum v této oblasti je součástí připravované Strategie rozvoje Akademie věd. and Jana Křížová.
Neurogenic pulmonary edema is a life-threatening complication, known for almost 100 years, but its etiopathogenesis is still not completely understood. This review summarizes current knowledge about the etiology and pathophysiology of neurogenic pulmonary edema. The roles of systemic sympathetic discharge, central nervous system trigger zones, intracranial pressure, inflammation and anesthesia in the etiopathogenesis of neurogenic pulmonary edema are considered in detail. The management of the patient and experimental models of neurogenic pulmonary edema are also discussed., J. Šedý, J. Zicha, J. Kuneš, P. Jendelová, E. Syková., and Obsahuje bibliografii a bibliografické odkazy