Arterial wall stiffness is considered an independent cardiovascular risk factor. Aim of this study was to evaluate relationship between clinical, 24-hour, average day-time and night-time blood pressure (BP) and measures of arterial stiffness assessed by pulse wave velocity (PWV) (using SphygmoCor applanation tonometer) in essential hypertension (severe-resistant (RH, n=29) and moderate hypertension (EH, n=35)) and in normotensive control subjects (n-29) (NCS) matched by age. After multiple regression analysis, PWV remains significantly correlated mainly with night-time pulse pressure and to a lesser extent with age. PWV was significantly higher in RH compared to moderate EH and NCS., J. Rosa, B. Štrauch, O. Petrák, T. Pikus, R. Holaj, T. Zelinka, D. Wichterle, J. Widimský Jr., and Obsahuje bibliografii a bibliografické odkazy
Renin-angiotensin system (RAS) plays a key role in the regulation of renal function, volume of extracellular fluid and blood pressure. The activation of RAS also induces oxidative stress, particularly superoxide anion (O2-) formation. Although the involvement of O2- production in the pathology of many diseases is known for long, recent studies also strongly suggest its physiological regulatory function of many organs including the kidney. However, a marked accumulation of O2- in the kidney alters normal regulation of renal function and thus may contribute to the development of salt-sensitivity and hypertension. In the kidney, O2- acts as vasoconstrictor and enhances tubular sodium reabsoption. Nitric oxide (NO), another important radical that exhibits opposite effects than O2-, is also involved in the regulation of kidney function. O2- rapidly interacts with NO and thus, when O2- production increases, it diminishes the bioavailability of NO leading to the impairment of organ function. As the activation of RAS, particularly the enhanced production of angiotensin II, can induce both O2- and NO generation, it has been suggested that physiological interactions of RAS, NO and O2- provide a coordinated regulation of kidney function. The imbalance of these interactions is critically linked to the pathophysiology of salt-sensitivity and hypertension., L. Kopkan, L. Červenka., and Obsahuje seznam literatury
A short review on the role of endothelium and nitric oxide (NO) in experimental hypertension is presented in the light of the literature and our own recent findings. Based on these data, it is concluded that even though there is a lot of evidence in favor of the primary and causal association of endothelial dysfunction and NO in experimental hypertension, it seems still more plausible that they are causative in some types of hypertension only. Our own experience rather speaks for a secondary but still an important participation of endothelium in the maintenance and further elevation of high blood pressure. Endothelium plays a key role in the development of organ damages in hypertension., H. Vapaatalo, E. Mervaala, M.-L. Nurminen., and Obsahuje bibliografii
Remodeled pulmonary arteries return to normal structural conditions after the increase in pulmonary artery flow resistance is reversed. We studied whether proteolysis of extracellular matrix proteins and apoptosis occur during reversal of remodeling produced by chronic hypoxia in the rat. Main pulmonary arteries were removed at different times during a 10-day period of exposure to 10% O2 and 14 days after return to air. Content and rates of degradation of collagen and elastin as well as immunoreactive collagenase in tissue and isolated mast cells were measured. Immunoblots for collagenase and tissue inhibitor of metalloproteinases (TIMP) were performed. Apoptosis was assessed by cleavage of DNA and TUNEL assay. Excess collagen and elastin present at 10 days of hypoxia decreased to near normal levels after 3-5 days of air. Transient increases in collagenolytic and elastolytic enzyme activities accompanied the rapid decrease in matrix proteins. Mast cells containing collagenase accumulated in remodeled pulmonary arteries, and the active form of collagenase appeared at the time of peak proteolytic activity. TIMP increased during remodeling. Apoptosis was maximal 3 days after return to air. Our results suggest that activation of enzymes, which degrade matrix proteins, and apoptosis play a role in resolution of vascular remodeling., D. J. Riley, S. Thakker-Varia, F. J. Wilson, G. J. Poiani, C. A. Tozzi., and Obsahuje bibliografii
Enhanced production of superoxide radicals by nicotinamideadenine dinucleotide phosphate (NADPH) oxidase in the brain and/or kidney of salt hypertensive Dahl rats has been proposed to participate in the pathogenesis of this form of experimental hypertension. Most information was obtained in young Dahl saltsensitive (DS) rats subjected to high salt intake prior to sexual maturation. Therefore, the aim of our study was to investigate whether salt hypertension induced in adult DS rats is also accompanied with a more pronounced oxidative stress in the brain or kidney as compared to Dahl salt-resistant (DR) controls. NADPH oxidase activity as well as the content of thiobarbituric acid-reactive substances (TBARS) and conjugated dienes (oxidative index), which indicate a degree of lipid peroxidation, were evaluated in two brain regions (containing either hypothalamic paraventricular nucleus or rostral ventrolateral medulla) as well as in renal medulla and cortex. High salt intake induced hypertension in DS rats but did not modify blood pressure in DR rats. DS and DR rats did not differ in NADPH oxidase-dependent production of ROS, TBARS content or oxidative index in either part of the brain. In addition, high-salt diet did not change significantly any of these brain parameters. In contrast, the enhanced NADPH oxidase-mediated ROS production (without significant signs of increased lipid peroxidation) was detected in the renal medulla of salt hypertensive DS rats. Our findings suggest that there are no signs of enhanced oxidative stress in the brain of adult Dahl rats with salt hypertension induced in adulthood., M. Vokurková, H. Rauchová, L. Řezáčová, I. Vaněčková, J. Zicha., and Obsahuje bibliografii
Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (statins) have been proven to reduce effectively cholesterol level and morbidity and mortality in patients with coronary heart disease and/or dyslipoproteinemia. Statins inhibit synthesis of mevalonate, a precursor of both cholesterol and coenzyme Q (CoQ). Inhibited biosynthesis of CoQ may be involved in some undesirable actions of statins. We investigated the effect of simvastatin on tissue CoQ concentrations in the rat model of NO-deficient hypertension induced by chronic L-NAME administration. Male Wistar rats were treated daily for 6 weeks with L-NAME (40 mg/kg) or with simvastatin (10 mg/kg), another group received simultaneously L-NAME and simvastatin in the same doses. Coenzyme Q9 and Q10 concentrations were analyzed by high performance liquid chromatography. L-NAME and simvastatin alone had no effect on CoQ concentrations. However, simultaneous application of L-NAME and simvastatin significantly decreased concentrations of both CoQ homologues in the left ventricle and slightly decreased CoQ9 concentration in the skeletal muscle. No effect was observed on CoQ level in the liver and brain. We conclude that the administration of simvastatin under the condition of NO-deficiency reduced the level of CoQ in the heart and skeletal muscle what may participate in adverse effect of statins under certain clinical conditions., J. Kucharská, A. Gvozdjáková, F. Šimko., and Obsahuje bibliografii
Slow breathing training reduces resting blood pressure, probably by modifying central autonomic control, but evidence for this is lacking. The pressor response to static handgr ip exercise is a measure of autonomic control and the aim of this study was to determine whether slow breathing training modulates the pressor responses to exercise of untrained muscles. Twenty hypertensive patients trained for 8 weeks, 10 with unloaded slow breathing (Unloaded) and 10 breathing against an inspiratory load of 20 cm H 2 O (Loaded). Ten subjects were untrained controls. Subjects performed a 2 min handgrip pressor test (30 % MVC) pre - and post- training, and blood pressure and heart rate (HR) were measured before the contraction, at the end and following 2 min recovery. Resting systolic (sBP) and HR were reduced as a result of tra ining, as reported previously. After training there was both a smaller pressor response to hand grip exercise and a more rapid recovery of sBP and HR compared to pre -training. There were no changes in the Controls and no differences between the Unloaded and Loaded groups. Combining the two training groups, the sBP response to handgrip exercise after training was reduced by 10 mm Hg (95 % CI: - 7, - 13) and HR by 5 bpm (95 % CI: - 4, - 6), all p<0.05. These results are consistent with slow breathing training modifying central mechanisms regulating cardiovascular function., C. U. Jones, B. Sangthong, O. Pachirat, D. A. Jones., and Obsahuje bibliografii
Aldosterone receptor antagonist, spironolactone, has been shown to prevent remodeling of the heart in several models of left ventricular hypertrophy. The aim of the present study was to determine whether the treatment with spironolactone can prevent hypertension, reduction of tissue nitric oxide synthase activity and left ventricular (LV) and aortic remodeling in NG-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Four groups of rats were investigated: control, spironolactone (200 mg/kg), L-NAME (40 mg/kg) and L-NAME + spironolactone (in corresponding dosage). Animals were studied after 5 weeks of treatment. The decrease of NO-synthase activity in the LV and kidney was associated with the development of hypertension and LV hypertrophy, with increased DNA concentration in the LV, and remodeling of the aorta in the L-NAME group. Spironolactone prevented the inhibition of NO-synthase activity in the LV and kidney and partially attenuated hypertension and LVH development and the increase in DNA concentration. However, remodeling of the aorta was not prevented by spironolactone treatment. We conclude that the aldosterone receptor antagonist spironolactone improved nitric oxide production and partially prevented hypertension and LVH development without preventing hypertrophy of the aorta in NO-deficient hypertension. The reactive growth of the heart and aorta seems to be controlled by different mechanisms in L-NAMEinduced hypertension., F. Šimko, J. Matúšková, I. L'upták, T. Pinčíková, K. Krajčírovičová, S. Štvrtina, J. Pomšár, V. Pelouch, L'. Paulis, O. Pecháňová., and Obsahuje bibliografii
NG-nitro-L-arginine-methyl ester (L-NAME)-induced hypertension is associated with protein remodeling of the left ventricle. The aim of the study was to show, whether aldosterone receptor blocker spironolactone and precursor of NOproduction L-arginine were able to reverse the protein rebuilding of the left ventricle. Six groups of male Wistar rats were investigated: control 4 (4 weeks placebo), L-NAME (4 weeks L-NAME), spontaneous-regression (4 weeks L-NAME + 3 weeks placebo), spironolactone-regression (4 weeks L-NAME + 3 weeks spironolactone), L-arginineregression (4 weeks L-NAME + 3 weeks arginine), control 7 (7 weeks placebo). L-NAME administration induced hypertension, hypertrophy of the left ventricle (LV), and the increase of metabolic and contractile as well as soluble and insoluble collagenous protein concentration. The systolic blood pressure and relative weight of the LV decreased in all three groups with regression, while the most prominent attenuation of the LVH was observed after spironolactone treatment. In the spontaneous-regression and L-arginine-regression groups the concentrations of individual proteins were not significantly different from the control value. However, in the spironolactone-regression group the concentration of metabolic, contractile and insoluble collagenous proteins remained significantly increased in comparison with the control group. The persistence of the increased protein concentration in the spironolactone group may be related to the more prominent reduction of myocardial water content by spironolactone., F. Šimko, A. Potáčová, V. Pelouch, L'. Paulis, J. Matúšková, K. Krajčírovičová, O. Pecháňová, M. Adamcová., and Obsahuje bibliografii