This submission contains trained end-to-end models for the Neural Monkey toolkit for Czech and English, solving three NLP tasks: machine translation, image captioning, and sentiment analysis.
The models are trained on standard datasets and achieve state-of-the-art or near state-of-the-art performance in the tasks.
The models are described in the accompanying paper.
The same models can also be invoked via the online demo: https://ufal.mff.cuni.cz/grants/lsd
There are several separate ZIP archives here, each containing one model solving one of the tasks for one language.
To use a model, you first need to install Neural Monkey: https://github.com/ufal/neuralmonkey
To ensure correct functioning of the model, please use the exact version of Neural Monkey specified by the commit hash stored in the 'git_commit' file in the model directory.
Each model directory contains a 'run.ini' Neural Monkey configuration file, to be used to run the model. See the Neural Monkey documentation to learn how to do that (you may need to update some paths to correspond to your filesystem organization).
The 'experiment.ini' file, which was used to train the model, is also included.
Then there are files containing the model itself, files containing the input and output vocabularies, etc.
For the sentiment analyzers, you should tokenize your input data using the Moses tokenizer: https://pypi.org/project/mosestokenizer/
For the machine translation, you do not need to tokenize the data, as this is done by the model.
For image captioning, you need to:
- download a trained ResNet: http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz
- clone the git repository with TensorFlow models: https://github.com/tensorflow/models
- preprocess the input images with the Neural Monkey 'scripts/imagenet_features.py' script (https://github.com/ufal/neuralmonkey/blob/master/scripts/imagenet_features.py) -- you need to specify the path to ResNet and to the TensorFlow models to this script
Feel free to contact the authors of this submission in case you run into problems!
This submission contains trained end-to-end models for the Neural Monkey toolkit for Czech and English, solving four NLP tasks: machine translation, image captioning, sentiment analysis, and summarization.
The models are trained on standard datasets and achieve state-of-the-art or near state-of-the-art performance in the tasks.
The models are described in the accompanying paper.
The same models can also be invoked via the online demo: https://ufal.mff.cuni.cz/grants/lsd
In addition to the models presented in the referenced paper (developed and published in 2018), we include models for automatic news summarization for Czech and English developed in 2019. The Czech models were trained using the SumeCzech dataset (https://www.aclweb.org/anthology/L18-1551.pdf), the English models were trained using the CNN-Daily Mail corpus (https://arxiv.org/pdf/1704.04368.pdf) using the standard recurrent sequence-to-sequence architecture.
There are several separate ZIP archives here, each containing one model solving one of the tasks for one language.
To use a model, you first need to install Neural Monkey: https://github.com/ufal/neuralmonkey
To ensure correct functioning of the model, please use the exact version of Neural Monkey specified by the commit hash stored in the 'git_commit' file in the model directory.
Each model directory contains a 'run.ini' Neural Monkey configuration file, to be used to run the model. See the Neural Monkey documentation to learn how to do that (you may need to update some paths to correspond to your filesystem organization).
The 'experiment.ini' file, which was used to train the model, is also included.
Then there are files containing the model itself, files containing the input and output vocabularies, etc.
For the sentiment analyzers, you should tokenize your input data using the Moses tokenizer: https://pypi.org/project/mosestokenizer/
For the machine translation, you do not need to tokenize the data, as this is done by the model.
For image captioning, you need to:
- download a trained ResNet: http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz
- clone the git repository with TensorFlow models: https://github.com/tensorflow/models
- preprocess the input images with the Neural Monkey 'scripts/imagenet_features.py' script (https://github.com/ufal/neuralmonkey/blob/master/scripts/imagenet_features.py) -- you need to specify the path to ResNet and to the TensorFlow models to this script
The summarization models require input that is tokenized with Moses Tokenizer (https://github.com/alvations/sacremoses) and lower-cased.
Feel free to contact the authors of this submission in case you run into problems!
The data set includes training, development and test data from the shared tasks on pronoun-focused machine translation and cross-lingual pronoun prediction from the EMNLP 2015 workshop on Discourse in Machine Translation (DiscoMT2015). The release also contains the submissions to the pronoun-focused machine translation along with the manual annotations used for the official evaluation as well as gold-standard annotations of pronoun coreference for the shared task test set.
This software package includes three tools: web frontend for machine translation featuring phonetic transcription of Ukrainian suitable for Czech speakers, API server and a tool for translation of documents with markup (html, docx, odt, pptx, odp,...). These tools are used in the Charles Translator service (https://translator.cuni.cz).
This software was developed within the EdUKate project, which aims to help mitigate language barriers between non-Czech-speaking children in the Czech Republic and the education in the Czech school system. The project focuses on the development and dissemination of multilingual digital learning materials for students in primary and secondary schools.
English-Urdu parallel corpus is a collection of religious texts (Quran, Bible) in English and Urdu language with sentence alignments. The corpus can be used for experiments with statistical machine translation. Our modifications of crawled data include but are not limited to the following:
1- Manually corrected sentence alignment of the corpora.
2- Our data split (training-development-test) so that our published experiments can be reproduced.
3- Tokenization (optional, but needed to reproduce our experiments).
4- Normalization (optional) of e.g. European vs. Urdu numerals, European vs. Urdu punctuation, removal of Urdu diacritics.
This package contains an extended version of the test collection used in the CLEF eHealth Information Retrieval tasks in 2013--2015. Compared to the original version, it provides complete query translations into Czech, French, German, Hungarian, Polish, Spanish and Swedish and additional relevance assessment.
This machine translation test set contains 2223 Czech sentences collected within the FAUST project (https://ufal.mff.cuni.cz/grants/faust, http://hdl.handle.net/11234/1-3308).
Each original (noisy) sentence was normalized (clean1 and clean2) and translated to English independently by two translators.