Czech image captioning, machine translation, and sentiment analysis (Neural Monkey models)
- Title:
- Czech image captioning, machine translation, and sentiment analysis (Neural Monkey models)
- Creator:
- Libovický, Jindřich, Rosa, Rudolf, Helcl, Jindřich, and Popel, Martin
- Contributor:
- GA ČR@@18-02196S@@Reprezentace lingvistické struktury v neuronových sítích@@nationalFunds@@, Ministerstvo školství, mládeže a tělovýchovy České republiky@@LM2015071@@LINDAT/CLARIN: Institut pro analýzu, zpracování a distribuci lingvistických dat@@nationalFunds@@, Ministerstvo školství, mládeže a tělovýchovy České republiky@@CZ.02.1.01/0.0/0.0/16_013/0001781@@LINDAT/CLARIN - Výzkumná infrastruktura pro jazykové technologie - rozšíření repozitáře a výpočetní kapacity@@nationalFunds@@, Univerzita Karlova (mimo GAUK)@@SVV 260 453@@Specifický vysokoškolský výzkum@@nationalFunds@@, and GAUK@@976518@@Využití lingvistické informace v neuronovém strojovém překladu@@ownFunds@@
- Publisher:
- Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics (UFAL)
- Identifier:
- http://hdl.handle.net/11234/1-2839
- Subject:
- sentiment analysis, machine translation, image captioning, neural networks, transformer, and Neural Monkey
- Type:
- suiteOfTools and toolService
- Description:
- This submission contains trained end-to-end models for the Neural Monkey toolkit for Czech and English, solving three NLP tasks: machine translation, image captioning, and sentiment analysis. The models are trained on standard datasets and achieve state-of-the-art or near state-of-the-art performance in the tasks. The models are described in the accompanying paper. The same models can also be invoked via the online demo: https://ufal.mff.cuni.cz/grants/lsd There are several separate ZIP archives here, each containing one model solving one of the tasks for one language. To use a model, you first need to install Neural Monkey: https://github.com/ufal/neuralmonkey To ensure correct functioning of the model, please use the exact version of Neural Monkey specified by the commit hash stored in the 'git_commit' file in the model directory. Each model directory contains a 'run.ini' Neural Monkey configuration file, to be used to run the model. See the Neural Monkey documentation to learn how to do that (you may need to update some paths to correspond to your filesystem organization). The 'experiment.ini' file, which was used to train the model, is also included. Then there are files containing the model itself, files containing the input and output vocabularies, etc. For the sentiment analyzers, you should tokenize your input data using the Moses tokenizer: https://pypi.org/project/mosestokenizer/ For the machine translation, you do not need to tokenize the data, as this is done by the model. For image captioning, you need to: - download a trained ResNet: http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz - clone the git repository with TensorFlow models: https://github.com/tensorflow/models - preprocess the input images with the Neural Monkey 'scripts/imagenet_features.py' script (https://github.com/ufal/neuralmonkey/blob/master/scripts/imagenet_features.py) -- you need to specify the path to ResNet and to the TensorFlow models to this script Feel free to contact the authors of this submission in case you run into problems!
- Language:
- Czech and English
- Rights:
- Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
http://creativecommons.org/licenses/by-nc-sa/4.0/
PUB - Relation:
- https://ufal.mff.cuni.cz/grants/lsd
http://ceur-ws.org/Vol-2203/138.pdf
http://hdl.handle.net/11234/1-3145 - Source:
- https://ufal.mff.cuni.cz/grants/lsd
- Harvested from:
- LINDAT/CLARIAH-CZ repository
- Metadata only:
- false
- Date:
- 2018-07-13
The item or associated files might be "in copyright"; review the provided rights metadata:
- Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- PUB