As environmental and genetic components contribute to the PCOS expression, we compared levels of endocrine disruptors, steroid hormones, cytokines, and metabolic parameters in twenty healthy, nine normal-weight PCOS women, and ten obese PCOS women. Steroid hormones, bisphenols (BPA, BPS, BPF, BPAF) and parabens (methyl-, ethyl-, propyl-, butyl-, benzyl-parabens) were measured by liquid chromatography-tandem mass spectrometry. Differences between the groups were assessed using the Mann-Whitney U test. Spearman correlation coefficients were calculated for the individual parameters relationship. Significantly higher levels of BPA, anti-Müllerain hormone, lutropine, lutropine/folitropine ratio, testosterone, androstenedione, 7β-OH-epiandrosterone, and cytokines (IL-6, VEGF, PDGF-bb), were found in normal-weight PCOS women compared to controls. Between normal-weight and obese PCOS women, there were no differences in hormonal, but in metabolic parameters. Obese PCOS women had significantly higher insulin resistance, fattyliver index, triglycerides, cytokines (IL-2, IL-13, IFN-γ). In healthy, but not in PCOS, women, there was a positive correlation of BPA with testosterone, SHBG with lutropine, and folitropine, while testosterone negatively correlated with SHBG. In obese women with PCOS, insulin resistance negatively correlated with SHBG and estradiol. No differences were observed in the paraben exposure. Levels of BPA were higher in PCOS women, indicating its role in the etiology. Obesity significantly worsens the symptoms., Markéta Šimková, Jana Vítků, Lucie Kolátorová, Jana Vrbíková, Michala Vosátková, Josef Včelák, Michaela Dušková., and Obsahuje bibliografii
The incidence of metabolic syndrome increases in the developed countries, therefore biomedical research is focused on the understanding of its etiology. The study of exact mechanisms is very complicated because both genetic and environmental factors contribute to this complex disease. The ability of environmental fac tors to promote phenotype changes by epigenetic DNA modifications (i.e. DNA methylation, histone modifications) was demonstrated to play an important role in the development and predisposition to particular symptoms of metabolic syndrome. There is no doubt that the early life, such as the fetal and perinatal periods, is critical for metabolic syndrome development and therefore critical for prevention of this disease. Moreover, these changes are visible not only in individuals exposed to environmental factor s but also in the subsequent progeny for multiple generations and this phenomenon is called transgenerational inheritance. The knowledge of molecular mechanisms, by which early minor environmental stimuli modify the expression of genetic information, might be the desired key for the understanding of mechanisms leading to the change of phenotype in adulthood. This review provides a short overview of metabolic syndrome epigenetics., J. Kuneš, I. Vaněčková, B. Mikulášková, M. Behuliak, L. Maletínská, J. Zicha., and Obsahuje bibliografii
Obesity increases the incidence of hypogonadism in men, and hypogonadism in turn plays a role in obesity. One of the first mechanisms proposed to explain this was a hypothesis based on the principle that obese men have higher estrogen levels, and that increased estrogens provide feedback to the hypothalamicpituitary-testicular axis, reducing the secretion of gonadotropins and leading to a decrease of overall testosterone levels. This concept has since been questioned, though never completely disproven. In this study we compared hormone levels in three groups of men with differing BMI levels (between 18-25, 25-29, and 30-39), and found correlations between lowering overall testosterone, SHBG and increased BMI. At the same time, there were no significant changes to levels of free androgens, estradiol or the gonadotropins LH and FSH. These findings are in line with the idea that estrogen production in overweight and obese men with BMI up to 39 kg/m2 does not significantly influence endocrine testicular function., Luboslav Stárka, Martin Hill, Hana Pospíšilová, Michaela Dušková., and Obsahuje bibliografii
Obesity is often associated with metabolic impairments in peripheral tissues. Evidence suggests an excess of free fatty acids (FFA) as one factor linking obesity and related pathological conditions and the impact of FFA overload on skeletal muscle metabolism is described herein. Obesity is associated with dysfunctional adipose tissue unable to buffer the flux of dietary lipids. Resulting increased levels and fluxes of plasma FFA lead to ectopic lipid deposition and lipotoxicity. FFA accumulated in skeletal muscle are associated with insulin resistance and overall cellular dysfunction. Mechanisms supposed to be involved in these conditions include the Randle cycle, intracellular accumulation of lipid metabolites, inflammation and mitochondrial dysfunction or mitochondrial stress. These mechanisms are described and discussed in the view of current experimental evidence with an emphasis on conflicting theories of decreased vs. increased mitochondrial fat oxidation associated with lipid overload. Since different types of FFA may induce diverse metabolic responses in skeletal muscle cells, this review also focuses on cellular mechanisms underlying the different action of saturated and unsaturated FFA., J. Tumova, M. Andel, J. Trnka., and Obsahuje bibliografii
It is known that excessive sympathetic activity and oxidative stress are enhanced in obesity. This study aimed to clarify whether exercise training (ET) attenuates sympathetic activation and oxidative stress in obesity. The obesity was induced by highfat diet (HFD) for 12 weeks. Male Sprague-Dawley rats were assigned to four groups: regular diet (RD) plus sedentary (RD-S), RD plus ET (RD-ET), HFD plus sedentary (HFD-S), and HFD plus ET (HFD-ET). The rats in RD-ET and HFD-ET groups were trained on a motorized treadmill for 60 min/day, five days/week for 8 weeks. The sympathetic activity was evaluated by the plasma norepinephrine (NE) level. The superoxide anion, malondialdehyde and F2-isoprostanes levels in serum and muscles were measured to evaluate oxidative stress. The ET prevented the increases in the body weight, arterial pressure and white adipose tissue mass in HFD rats. The NE level in plasma and oxidative stress related parameters got lower in HFD-ET group compared with HFD-S group. We have found decreased mRNA and protein levels of toll-like receptor (TLR)-2 and TLR-4 by ET in HFD rats. These findings suggest that ET may be effective for attenuating sympathetic activation and oxidative stress in diet-induced obesity., G. Li, J.-Y. Liu, H.-X. Zhang, Q. Li, S.-W. Zhang., and Obsahuje bibliografii
Accumulation of adipose tissue in lower body lowers risk of cardiovascular and metabolic disorders. The molecular basis of this protective effect of gluteofemoral depot is not clear. The aim of this study was to compare the profile of expression of inflammation-related genes in su bcutaneous gluteal (sGAT) and abdominal (sAAT) adipose tissue at baseline and in response to multiphase weight-reducing dietary intervention (DI). 14 premenopausal healthy obese women underwent a 6 months’ DI consisting of 1 month very-low-calorie-diet (VLCD), subsequent 2 months’ low-calori e-diet and 3 months’ weight maintenance diet (WM). Paired samples of sGAT and sAAT were obtained before and at the end of VLCD and WM periods. mRNA expression of 17 genes (macrophage markers, cytokines) was measured using RT-qPCR on chip-platform. At baseline, there were no differences in gene expression of macrophage markers and cytokines between sGAT and sAAT. The dynamic changes induced by DI were similar in both depots for all genes except for three cytokines (IL6, IL10, CCL2) that differed in their response during weight maintenance phase. The results show that, in obese women, there are no major differences between sGAT and sAAT in expression of inflammation-related genes at baseline conditions and in response to the weight-reducing DI., L. Mališová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
First intron variability of the fat mass and obesity associated gene (FTO) has strong impact on adiposity. We focused on lean women carrying the most “obesity-risk” haplotype to study their anthropometric parameters and hormonal and metabolic profile. Genotype-phenotype correlation was performed in a group of 172 lean women (body mass index (BMI) ≥18.5 and <25 kg/m2; age 26.8±7.26 years), 77 of them used hormonal contraceptives. Even in lean women the association of the risk haplotype CAGA with BMI was confirmed but it did not influence the anthropometric indices of body composition. CAGA carriers compared to non-carriers had significantly higher both fasting (p=0.016) and post glucose load (p<0.001) levels of growth hormone (GH), significantly higher glucose, insulin and C-peptide levels in the late phase of oGTT and lower fasting concentration of total cholesterol and LDL-cholesterol. Administration of hormonal contraceptives further increased observed hormonal and metabolic effects in CAGA carriers. We conclude that higher levels of GH in lean women carrying the FTO “obesity risk” haplotype could protect them from the development of obesity. The relation between the FTO gene variability and GH secretion has to be elucidated. This is the first study demonstrating the interaction of FTO genotype with hormonal contraception., P. Lukášová, M. Vaňková, J. Včelák, D. Vejražková, O. Bradnová, S. Stanická, V. Hainer, B. Bendlová., and Obsahuje bibliografii
Bariatric surgery is the most effective method in the treatment of obesity and type 2 diabetes (T2DM). The aim of this study was to evaluate the effects of different types of bariatric procedures on remission of T2DM and on the fatty acid composition in subcutaneous adipose tissue. Patients included obese diabetic women who underwent bariatric surgery: biliopancreatic diversion (BPD), n=8, laparoscopic gastric banding (LAGB), n=9 or laparoscopic greater curvature plication (LGCP), n=12. Anthropometric characteristics and fatty acid composition of adipose tissue (FA AT) were analyzed before surgery, then 6 months and 2 years after surgery. FA AT was analyzed by gas chromatography. Diabetes remission was estimated. BPD was most efficient in inducing a remission of diabetes (p=0.004). Significantly higher increases in lauric (12:0), myristoleic (14:1n-5) and palmitoleic (16:1n-7) acids and delta-9 desaturase were found two years after BPD, suggesting higher lipogenesis in adipose tissue. Docosatetraenoic acid (22:4n-6) increased significantly after BPD, while docosapentaenoic acid (22:5n-3) decreased 6 months after BPD and increased after 2 years. No changes were found after LAGB and LGCP after 2 years. Bariatric surgery led to significant changes in the fatty acid composition of subcutaneous adipose tissue in severely obese diabetic women after six months and two years, and was partly influenced by the type of surgery used., M. Kunešová, B. Sedláčková, O. Bradnová, E. Tvrzická, B. Staňková, P. Šrámková, K. Dolešalová, P. Kalousková, P. Hlavatý, M. Hill, B. Bendlová, M. Fried, V. Hainer, J. Vrbíková., and Obsahuje bibliografii
Fibroblast growth factor 21 (FGF21) is a novel metabolic regulator produced primarily by the liver that exerts potent antidiabetic and lipid-lowering effects in animal models of obesity and type 2 diabetes mellitus. This hormone contributes to body weight regulation and is strongly involved in the response to nutritional deprivation and ketogenic state in mice. The principal sites of metabolic actions of FGF21 are adipose tissue, liver and pancreas. Experimental studies have shown marked improvements in diabetes compensation and dyslipidemia after FGF21 administration in diabetic mice and primates. Positive metabolic actions of FGF21 without the presence of apparent side effects make this factor a hot candidate to treat type 2 diabetes and accompanying metabolic diseases. The aim of this review is to summarize the current knowledge about the metabolic effects of FGF21 including some preliminary data on changes of its levels in humans with a special emphasis on its therapeutic potential in type 2 diabetes mellitus., I. Dostálová, D. Haluzíková, M. Haluzík., and Obsahuje seznam literatury
To investigate the relationship between early nutritional experience, ontogeny of the small intestinal functions and predisposition to obesity development, the following experimental models of male Sprague-Dawley rats were used: 1) rats in which the quantity of nutrition was manipulated from birth to weaning (day 30) by adjusting the number of pups in the nest to 4 (SL), 10 (NL) and 16 pups (LL) and 2) littermates of SL, NL and LL rats fed either a standard or a hypercaloric diet from days 80 to 135 of age. The overfed SL pups were overweight after day 15 and became permanently obese, whereas the underfed smaller LL pups, due to accelerated growth and enhanced food intake from day 30 to day 35, attained a body fat level that did not differ from normally fed NL rats. Moreover, a significantly increased duodenal and jejunal alkaline phosphatase (AP) activity was found in SL and LL rats and these acquired somatic and intestinal characteristics persisted from weaning throughout life. Eight weeks of high-energy diet feeding elicited a similar pattern of intestinal response in SL and LL rats that was clearly different from NL rats. Despite energy overconsumption in these three groups, both SL and LL rats still displayed enhanced AP activity and showed a significant increase in protein/DNA ratio accompanied with a significant body fat accretion. These results indicate that the postnatally acquired small intestinal changes induced by over- and undernutrition could be involved in the similar predisposition to obesity risk in later life when caloric density of the diet is raised., Š. Možeš, Z. Šefčíková, Ľ. Lenhardt., and Obsahuje bibliografii a bibliografické odkazy