We introduce the function Z(x;ξ,ν):=∫x−∞φ(t−ξ)⋅Φ(νt)dt, where φ and Φ are the pdf and cdf of N(0,1), respectively. We derive two recurrence formulas for the effective computation of its values. We show that with an algorithm for this function, we can efficiently compute the second-order terms of Bonferroni-type inequalities yielding the upper and lower bounds for the distribution of a max-type binary segmentation statistic in the case of small samples (where asymptotic results do not work), and in general for max-type random variables of a certain type. We show three applications of the method -- (a) calculation of critical values of the segmentation statistic, (b) evaluation of its efficiency and (c) evaluation of an estimator of a point of change in the mean of time series.
AIM: The purpose of this study was to develop a revised version of the Brief Bedside Dysphagia Screening Test for determining penetration/aspiration risk in patients prone to dysphagia. The priority was to achieve high sensitivity and negative predictive value. METHODS: The study screeners conducted bedside assessment of the swallowing function in 157 patients with a neurological (mainly stroke) or an ear, nose, and throat diagnosis (mainly head and neck cancer). The results were compared with a gold standard, flexible endoscopic examination of swallowing. RESULTS: For the neurological subgroup (N = 106), eight statistically significant bedside assessment items were combined into the Brief Bedside Dysphagia Screening Test-Revised (BBDST-R). Cut-off score 1 produced the highest sensitivity (95.5%; 95% confidence interval CI [CI]: 84.9-98.7%) and negative predictive value (88.9%; 95% CI 67.2-96.9%). CONCLUSION: The BBDST-R is suitable for dysphagia screening in departments caring for patients with neurological conditions. and P. Mandysová, E. Ehler, J. Škvrňáková, M. Černý, I. Bártová, A. Pellant
The Löwner-John ellipse of a full-dimensional bounded convex set is a circumscribed ellipse with the property that if we shrink it by the factor n (where n is dimension), we obtain an inscribed ellipse. Goffin's algorithm constructs, in polynomial time, a tight approximation of the Löwner-John ellipse of a polyhedron given by facet description. In this text we adapt the algorithm for zonotopes given by generator descriptions. We show that the adapted version works in time polynomial in the size of the generator description (which may be superpolynomially shorter than the facet description).
The historical period between 1897 and 1913 is not only the date of birth of modern atomic physics, but also the time when modern art arises and the foundations of mathematics and philosophy were reconsidered. In this period ambitious programs were set in the belief that the newly found methods proved a faster progress than that obtained by previous generations. This article puts into context the work in mathematics, philosophy, art and physics that allow the creation of an environment suitable for the emerging the revolutionary physical discovery made by Bohr., Období mezi lety 1897-1913 je dobou nejen prvního formování modelu atomů a vzniku dalších velkých fyzikálních děl, jako např. speciální teorie relativity, ale také dobou, kdy vzniká moderní umění a dochází k redefinování programu matematiky i filozofie. V tomto období jsou stanovovány odvážné programy ve víře, že nově nalezené metody umožní dohlédnout rychle dále než předchozí generace. Článek staví do kontextu práce v oblasti matematiky, filozofie, umění i fyziky, které tvořily duchovní ovzduší mimořádně příhodné pro formulování revolučního Bohrova modelu atomu, tohoto úhelného kamenu tzv. staré kvantové mechaniky., Michal Černý., and Obsahuje seznam literatury
Studie se zaměřuje na proměnu epistemických předpokladů v průběhu 20. a začátku 21. století a jejich vlivu na charakter vědecké práce a vědeckého myšlení. Analyzuje tři styly myšlení a jednání, které mají vliv na klíčové aspekty vědecké tvorby, struktury vědních disciplín nebo odborné vzdělávání. Největší prostor je věnován třetímu stylu myšlení a jednání, který je označen jako onlife a je charakteristický tím, že do procesu tvůrčí vědecké činnosti vpouští umělou inteligenci nikoli jako prostý nástroj, ale jako aktivního aktéra., This article is focused on the transformation of epistemic assumptions during the 20th and early 21st centuries and their influence on the nature of scientific work and scientific thinking. In particular, it analyses three styles of thinking and action, that affect crucial aspects of scientific creation, the structure of scientific disciplines or vocational education. The highest space is considered to be the third style of thinking and action, referred to as onlife. It is characterized by the fact that the process of creative scientific activity allows artists to be intelligent, not as a simple tool but as an active actor., Michal Černý., and Obsahuje bibliografické odkazy