In this paper we prove for an hl-loop $Q$ an assertion analogous to the result of Jakubík concerning lexicographic products of half linearly ordered groups. We found conditions under which any two lexicographic product decompositions of an hl-loop $Q$ with a finite number of lexicographic factors have isomorphic refinements.
Some results concerning congruence relations on partially ordered quasigroups (especially, Riesz quasigroups) and ideals of partially ordered loops are presented. These results generalize the assertions which were proved by Fuchs in [5] for partially ordered groups and Riesz groups.