Industrial chicory, Cichorium intybus L., has rather poor early vigour under the typical early spring morning conditions of low temperatures and high light intensity. Screening tools are being developed to assess the cold tolerance/sensitivity of young industrial chicory plants under these conditions. Refinement of such tools requires better understanding of the plants' physiological responses. In this paper we discuss the effects of growth temperature (GT), measurement temperature (MT), and measuring light intensity (ML) on the relaxation of the Kautsky curve. We chose the chicory variety 'Hera', as it is known to possess a good average early vigour. Young plants of the variety 'Hera' were grown at three temperatures (GT): 16°C (reference), 8°C (intermediate), and 4°C (cold stress). The dark relaxation kinetics were analyzed at different light intensities (ML) in combination with different measurement temperatures (MT). The three components of the nonphotochemical quenching process (NPQE, NPQT, and NPQI) were determined. NPQE was not affected by GT but was significantly affected by MT and ML. NPQT and NPQI were affected by all factors and their interactions. An acclimation effect for plants grown at low GT was detected. Acclimation resulted in lower NPQT and NPQI values. The halftime of the inhibition depending on NPQ (NPQI) was not affected by any of the factors investigated. Based on the data generated, we conclude that NPQI is a valuable parameter for screening the cold sensitivity of young industrial chicory plants. and P. Lootens ... [et al.].
Industrial chicory, Cichorium intybus L., is cultivated for the production of inulin. Most varieties of industrial chicory exhibit rather poor early growth, which limits further yield improvements in their European cultivation area. The poor early growth could be due to suboptimum adaptation of the gene pool to growth at low temperatures, sometimes in combination with high light intensities, which is typical of early-spring mornings. We have used chlorophyll (Chl) a fluorescence to evaluate the response of young plants of the cultivar 'Hera' to low temperatures and high light intensities. Plants were grown at three temperatures: 16°C (reference), 8°C (intermediate), and 4°C (cold stress). Light-response measurements were carried out at different light intensities in combination with different measurement temperatures. Parameters that quantify the photosystem II (PSII) operating efficiency (including PSII maximum efficiency and PSII efficiency factor) and nonphotochemical quenching (NPQ) are important to evaluate the stress in terms of severity, the photosynthetics processes affected, and acclimation to lower growth temperatures. The results clearly demonstrate that in young industrial chicory plants the photosynthetic system adapts to lower growth temperatures. However, to fully understand the plant response to the stresses studied and to evaluate the long-term effect of the stress applied on the growth dynamics, the subsequent dark relaxation dynamics should also be investigated. and S. Devacht ... [et al.].
The cold stress effect on early vigour and photosynthesis efficiency was evaluated for five industrial chicory varieties with contrasting early vigour. The relationships between the growth and physiological parameters were assessed. The varieties were examined at three growth temperatures: 16 (reference), 8 (intermediate) and 4 °C (stress). The effect was measured using physiological processes (growth, photosynthesis, chlorophyll a fluorescence), and pigment content. The analysis of the measured growth parameters (dry leaf and root mass, and leaf area) indicated that temperature had a significant effect on the varieties, but the overall reaction of the varieties was similar with lowering temperatures. The photosynthesis and chlorophyll a fluorescence measurements revealed significant changes for the photosynthesis (maximum net photosynthesis, quantum efficiency, light compensation point and dark respiration) and chlorophyll a fluorescence parameters (photochemical and non-photochemical quenching) with lowering temperatures for Hera and Eva, two extremes in youth growth. No significant differences could be found between the extremes for the different temperatures. The pigment content analysis revealed significant differences at 4 °C in contrast to 16 and 8 °C, especially for the xanthophyll/carotenoid pool, suggesting a protective role. Subsequently, the relationship between the physiological processes was evaluated using principal component analysis. At 4 °C, 2 principal components were detected with high discriminating power for the varieties and similar classification of the varieties as determined in the growth analysis. This provides a preview on the possible relationships between photosynthesis and growth for industrial chicory at low temperatures. and S. Devacht ... [et al.].