Progressive compromise of antioxidant defenses and free radical-mediated lipid peroxidation, which is one of the major mechanisms of secondary traumatic brain injury (TBI), has also been reported in pediatric head trauma. In the present study, we aimed to demonstrate the effect of melatonin, which is a potent free radical scavenger, on brain oxidative damage in 7-day-old rat pups subjected to contusion injury. Whereas TBI significantly increased thiobarbituric acid reactive substances (TBARS) levels, there was no compensatory increase in the antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) 24 hours after TBI in 7-day-old rats. Melatonin administered as a single dose of 5 mg/kg prevented the increase in TBARS levels in both non-traumatized and traumatized brain hemispheres. In conclusion, melatonin protects against oxidative damage induced by TBI in the immature brain.
Apoptosis of lymphoid tissues during sepsis is well documented and linked to the pathobiology of organ failure and death. In this study, we evaluated the effect of a single dose of recombinant erythropoietin (EPO) on thymic and splenic apoptosis in an endotoxic sepsis model. Young male Wistar rats were divided into 3 groups and administered intraperitoneally (IP) either normal saline; lipopolysaccharide (LPS) 10 mg/kg; or EPO (5000 U/kg) 30 min before lipopolysaccharide. Six hours following LPS administration animals were sacrificed. Apoptosis was assessed by hematoxylin-eosin staining, terminal deoxynucleotide transferase-mediated fluorescein-dUTP nick end labeling (TUNEL), and caspase-3 immunostaining. When compared with animals given LPS, animals pretreated with EPO displayed reduced splenic and thymic TUNEL positivity of 44±3 (p<0.05) and 1434 (p<0.05) nuclei per high power field (hpf), respectively. Caspase-3 positivity was also significantly reduced in the spleen and thymus, with 31±4 (p<0.05) and 93±3 (p<0.05) positive stained nuclei per hpf, respectively. Serum nitrite levels were elevated in animals given lipopolysaccharide. Pretreatment with EPO attenuated the increase in nitrite levels; however, this did not reach statistical significance. We conclude that a single dose of recombinant erythropoietin can reduce thymic and splenic apoptosis associated with lipopolysaccharide administration.