The present paper is devoted to the transition from crisp domains of probability to fuzzy domains of probability. First, we start with a simple transportation problem and present its solution. The solution has a probabilistic interpretation and it illustrates the transition from classical random variables to fuzzy random variables in the sense of Gudder and Bugajski. Second, we analyse the process of fuzzification of classical crisp domains of probability within the category ID of D-posets of fuzzy sets and put into perspective our earlier results concerning categorical aspects of fuzzification. For example, we show that (within ID) all nontrivial probability measures have genuine fuzzy quality and we extend the corresponding fuzzification functor to an epireflector. Third, we extend the results to simplex-valued probability domains. In particular, we describe the transition from crisp simplex-valued domains to fuzzy simplex-valued domains via a "simplex'' modification of the fuzzification functor. Both, the fuzzy probability and the simplex-valued fuzzy probability is in a sense minimal extension of the corresponding crisp probability theory which covers some quantum phenomenon.
We show that each sequentially continuous (with respect to the pointwise convergence) normed measure on a bold algebra of fuzzy sets (Archimedean $MV$-algebra) can be uniquely extended to a sequentially continuous measure on the generated Łukasiewicz tribe and, in a natural way, the extension is maximal. We prove that for normed measures on Łukasiewicz tribes monotone (sequential) continuity implies sequential continuity, hence the assumption of sequential continuity is not restrictive. This yields a characterization of the Łukasiewicz tribes as bold algebras absolutely sequentially closed with respect to the extension of probabilities. The result generalizes the relationship between fields of sets and the generated $\sigma $-fields discovered by J. Novák. We introduce the category of bold algebras and sequentially continuous homomorphisms and prove that Łukasiewicz tribes form an epireflective subcategory. The restriction to fields of sets yields the epireflective subcategory of $\sigma $-fields of sets.
It is known that the ring $B(\mathbb R)$ of all Baire functions carrying the pointwise convergence yields a sequential completion of the ring $C(\mathbb R)$ of all continuous functions. We investigate various sequential convergences related to the pointwise convergence and the process of completion of $C(\mathbb R)$. In particular, we prove that the pointwise convergence fails to be strict and prove the existence of the categorical ring completion of $C(\mathbb R)$ which differs from $B(\mathbb R)$.
The ring $B(R)$ of all real-valued measurable functions, carrying the pointwise convergence, is a sequential ring completion of the subring $C(R)$ of all continuous functions and, similarly, the ring $\mathbb{B}$ of all Borel measurable subsets of $R$ is a sequential ring completion of the subring $\mathbb{B}_0$ of all finite unions of half-open intervals; the two completions are not categorical. We study $\mathcal L_0^*$-rings of maps and develop a completion theory covering the two examples. In particular, the $\sigma $-fields of sets form an epireflective subcategory of the category of fields of sets and, for each field of sets $\mathbb{A}$, the generated $\sigma $-field $\sigma (\mathbb{A})$ yields its epireflection. Via zero-rings the theory can be applied to completions of special commutative $\mathcal L_0^*$-groups.
Let $\kappa $ be a cardinal number with the usual order topology. We prove that all subspaces of $\kappa ^2$ are weakly sequentially complete and, as a corollary, all subspaces of $\omega _1^2$ are sequentially complete. Moreover we show that a subspace of $(\omega _1+1)^2$ need not be sequentially complete, but note that $X=A\times B$ is sequentially complete whenever $A$ and $B$ are subspaces of $\kappa $.
We study sequential convergences defined on a Boolean algebra by systems of maximal filters. We describe the order properties of the system of all such convergences. We introduce the category of 2-generated convergence Boolean algebras and generalize the construction of Novák sequential envelope to such algebras.