Artefacts in applications of the global gravity field and topographic models based on satellite and terrestrial data of diverse kinds are studied. Various types of artefacts are presented and analysed with the aim to understand how the artefacts originated, how to reduce them (if feasible) and to avoid misinterpretations in geoscience. We work with the gravity aspects (gravity anomalies, the Marussi tensor of the second derivatives of disturbing potential, gravity invariants and their specific ratio, strike angles, and virtual deformations), and with surface or bedrock topography. Examples for the Earth, the Moon, and Mars are presented., Jaroslav Klokočník, Jan Kostelecký, Aleš Bezděk and Gunther Kleteschka., and Obsahuje bibliografii
Pracujeme s gravitačními aspekty (deskriptory): tíhovými anomálemi/poruchami, Marussiho tenzorem druhých derivací poruchového potenciálu, gravitačními invarianty a jejich specifickým poměrem, úhly napětí a s virtuálními deformacemi. Testovali jsme je na známých a velmi rozmanitých geologických útvarech. Poté jsme extrapolovali do méně známých oblastí. Objevili jsme dvě kandidátky na subglaciální sopky ve východní Antarktidě, tři subglaciální jezera a jednu jezerní pánev poblíž a přispěli jsme k diskusi o možném obrovském impaktním kráteru ve Wilkesově zemi. Ověřili jsme několik paleojezer na Sahaře a navrhli jedno zatím neznámé v západním Egyptě pod tlustými vrstvami písku. Pomohlil jsme ověřit nově objevené subglaciální krátery v Grónsku, podpořili existenci hypotetického kráteru v Indickém oceánu, sibiřského kráteru Kotuykanskaja a dalších. Korelovali jsme učesané úhly napětí s nalezišti ropy a plynů nebo podzemní vody., We work with the gravity (gravitational) aspects (descriptors): gravity anomalies/ perturbations, Marussi tensor of the second derivatives of the disturbing potential, gravity invariants and their specific ratio, strike angles and virtual deformations. By testing these aspects on known and diverse geological features, we are able to extrapolate the data for remote unknown areas. This has allowed us to discover two candidates for subglacial volcanoes in east Antarctica, three subglacial lakes and one lake basin nearby, and contributed to discussion about a possible huge impact crater in Wilkes Land, Antarctica. Also, we verified several paleolakes in the Sahara Desert and proposed one unknown paleolake in west Egypt under thick layers of sand. Additionally, we helped verify newly discovered subglacial craters in Greenland, supported the existence of a hypothetical crater in the Indian ocean, the Siberian crater Kotuykanskaya, and many others. By correlating the combed strike angles, we can identify possible deposits of oil and gases, or ground water., Jaroslav Klokočník., and Obsahuje bibliografické odkazy
Orbltal Inclinations of INTERCOSMOS 3, 5, 9, 10 and 11 satellites have been analysed passing through β/α - orbital resonances, and the values of the lumped geopotential coefficients of the 14th, 15th, 29th and 30th orders have been computed. These results have been used as a part of the input data for adjustments of the values of the individual harmonic coefficients of the relevant orders, as
constraints for the comprehensive gravity solutions GRIM 3, 3B, 3L1, for the accuracy calibration of older Goddard Earth Models, and for various intercomparisons of the gravity models.
Astronomical orientation of Pakal tomb. We prove that the Lord Pakal´s tomb in Palenque has astronomical orientation, namely by the solar orientation with respect to sunset or sunrise in summer or winter solstice. We measured inside the tomb by a precise magnetic compass and corrected the measured magnetic azimuths to the astronomical azimuths (using other measurements by GPS). The precision of our results is not worse than ±2 degrees.