The paper applies the pseudo-linear algebra to unify the results on reducibility, reduction and transfer equivalence for continuous- and discrete-time nonlinear control systems. The necessary and sufficient condition for reducibility of nonlinear input-output equation is presented in terms of the greatest common left factor of two polynomials describing the behaviour of the `tangent linearized system' equation. The procedure is given to find the reduced (irreducible) system equation that is transfer equivalent to the original system equation. Besides unification, the tools of pseudo-linear algebra allow to extend the results also for systems defined in terms of difference, q-shift and q-difference operators.
The paper studies the problem of lowering the orders of input derivatives in nonlinear generalized state equations via generalized coordinate transformation. An alternative, computation-oriented proof is presented for the theorem, originally proved by Delaleau and Respondek, giving necessary and sufficient conditions for existence of such a transformation, in terms of commutativity of certain vector fields. Moreover, the dual conditions in terms of 1-forms have been derived, allowing to calculate the new generalized state coordinates in a simpler way. The result is illustrated with an example, originally given by Delaleau and Respondek (see [2]), but solved in an alternative way.
In this paper the tools of pseudo-linear algebra are applied to the realization problem, allowing to unify the study of the continuous- and discrete-time nonlinear control systems under a single algebraic framework. The realization of nonlinear input-output equation, defined in terms of the pseudo-linear operator, in the classical state-space form is addressed by the polynomial approach in which the system is described by two polynomials from the non-commutative ring of skew polynomials. This allows to simplify the existing step-by-step algorithm-based solution. The paper presents explicit formulas to compute the differentials of the state coordinates directly from the polynomial description of the nonlinear system. The method is straight-forward and better suited for implementation in different computer algebra packages such as \textit{Mathematica} or \textit{Maple}.
Necessary and sufficient conditions are given for the existence of state and output transformations, that bring single-input single-output nonlinear state equations into the observer form. The conditions are formulated in terms of differential one-forms, associated with an input-output equation of the system. An algorithm for transformation of the state equations into the observer form is presented and illustrated by an example.