The bug family Nabidae (Heteroptera) includes taxa showing either a low chromosome number 2n = 16 + XY or high chromosome numbers 2n = 26 or 32 + XY. In order to reveal the direction of karyotype evolution in the family, a molecular phylogeny of the family was created to reveal the taxon closest to the ancestral type and hence the ancestral karyotype. The phylogeny was based on a partial sequence of the 18S rDNA gene of both high and low chromosome number species belonging to the subfamilies Prostemmatinae and Nabinae. Phylogeny created by the Neighbour Joining method separated the subfamilies, Prostemmatinae and Nabinae, which form sister groups at the base of this phylogenetic tree, as well as within the Nabinae, tribes Nabini and Arachnocorini. Combining karyosystematic data with the phylogeny of the family indicated that the ancestral karyotype was a high chromosome number, consisting of 2n = 32 + XY. During the course of evolution changes have occurred both in meiotic behaviour of the sex chromosomes and in the number of autosomes. The direction of karyotype evolution was from a high to low autosome number. Abrupt decreases in the number of autosomes have occurred twice; firstly when the tribe Arachnocorini differentiated from the main stem in the subfamily Nabinae and secondly within the tribe Nabini, when within the genus Nabis 2n = 16 + XY species diverged from the 2n = 32 + XY species. A scheme of the sequence of events in karyotype evolution during the evolution of the Nabidae is presented.
The aim of this study was to obtain information on the karyotypes, testes and ovaries of three fulgoroid families, mainly in the Issidae but also in the Caliscelidae and Acanaloniidae. For the Issidae, the data is for 19 species belonging to 11 genera of the subtribes Issina (2 species, 1 genus), Hysteropterina (14 species, 9 genera) and Agalmatiina (3 species, 2 genera) of the tribe Issini. The male karyotypes are shown to be quite uniform across the tribe, with 2n = 26 + X in all species studied except Latilica maculipes (Melichar, 1906) with 2n = 24 + X. The modal karyotype, 2n = 26 + X, matches the most probable ancestral state in the Fulgoroidea. In the majority of cases the number of seminal follicles in males and ovarioles in females are stable within but fairly variable among the species, the modal value of the follicle number is 10 per testis. Contrary to what might be expected from other fulgoroid families, such as the Dictyopharidae and Delphacidae, the variability in these characters revealed neither regular trends nor evident correspondence with the taxonomy of Issidae. In the Caliscelidae, all species studied had testes consisting of 6 follicles each and karyotypes of 2n = 24 + X and 26 + XY, respectively, in 3 and 1 species. The only representative studied of the Acanaloniidae, Acanalonia bivittata (Say, 1825), had 2n = 24 + X and 13 follicles in its testis. The variability in all the characters investigated is discussed and compared to other fulgoroid families, primarily to the most extensively studied families, Delphacidae and Dictyopharidae.