The major light-harvesting chlorophyll (Chl) a/b complexes of photosystem II (LHCIIb) play important roles in energy balance of thylakoid membrane. They harvest solar energy, transfer the energy to the reaction center under normal light condition and dissipate excess excitation energy under strong light condition. Many bamboo species could grow very fast even under extremely changing light conditions. In order to explain whether LHCIIb in bamboo contributes to this specific characteristic, the spectroscopic features, the capacity of forming homotrimers and structural stabilities of different isoforms (Lhcb1-3) were investigated. The apoproteins of the three isoforms of LHCIIb in bamboo are overexpressed in vitro and successfully refolded with thylakoid pigments. The sequences of Lhcb1 and Lhcb2 are similar and they are capable of forming homotrimer, while Lhcb3 lacks 10 residues in the N terminus and can not form the homotrimeric structure. The pigment stoichiometries, spectroscopic characteristics, thermo- and photostabilities of different reconstituted Lhcbs reveal that Lhcb3 differs strongly from Lhcb1 and Lhcb2. Lhcb3 possesses the lowest Qy transition energy and the highest thermostability. Lhcb2 is the most stable monomer under strong illumination among all the isoforms. These results suggest that in spite of small differences, different Lhcb isoforms in bamboo possess similar characteristics as those in other higher plants., Z. H. Jiang ... [et al.]., and Obsahuje bibliografii
Alkaline stress is important abiotic stress that restricts the growth and physiological activity of sorghum (Sorghum bicolor L. Moench). We aimed to investigate the effects of alkaline stress on alkali-tolerant SX44B and alkali-sensitive 262B sorghum inbred lines. The results showed that alkaline stress decreased the content of chlorophyll, activity of photosystem II, net photosynthetic rate, and destroyed chloroplast morphology. These changes were less pronounced in SX44B, possibly owing to its higher antioxidant enzyme activity and nonphotochemical quenching. Alkaline stress decreased water content, transpiration rate, and stomatal conductance while increasing the leaf temperature, with the effect being more pronounced in 262B. A significant correlation was observed between leaf-air temperature difference (ΔT) and relative water content and gas-exchange parameters, especially in 262B. Therefore, ΔT is an effective indicator for monitoring changes in sorghum leaves under alkaline stress and evaluating the alkali tolerance of different sorghum germplasm.
Erythropoietin (EPO), known for its role in erythroid differentiation, has been suggested to have a direct protective role against a variety of neurotoxic insults. In the present study, we investigated the expression of EPO receptor (EPOR) and the number of EPORpositive cells in three encephalic regions (ventral mesencephalon, striatum, cortex) following lesion induced by 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP). C57BL/6 mice underwent intraperitoneal injection of MPTP at 24 h intervals for 5 days, and their brains were examined 1, 2, 4, 7, 14 or 21 days after the last injection. Western blot and immunohistochemistry analysis revealed that EPOR was dramatically up-regulated in the ventral mesencephalon, 4 days after MPTP insult until the day 21. In contrast, there was a baseline level of EPOR in the striatum and cortex. At subsequent time points after MPTP injury, the levels of EPOR in the two regions were not statistically different compared with those in normal animals. These results suggest that the regional specific up-regulation of EPOR at an early stage after MPTP stimulus may represent a pro-survival mechanism against neurotoxin injury in Parkinsonian model., Y. Wu ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Understanding distribution and transport of carbon assimilates and photosynthesis contribution to grain yield in wheat spike is important in assessing the photosynthetic process under stress conditions. In this study, photosynthetic characteristics were evaluated in a pot experiment. Transport of spike photosynthates to grain was demonstrated using 14C isotope tracer technique. Yield and key enzyme activities of C3 and C4 pathways were examined after anthesis in wheat cultivars of different drought resistance. The ear net photosynthetic rate, chlorophyll content of the spike bracts (glume, lemma, and palea), and relative water content slightly decreased under water deficit in drought resistant variety Pubing 143 (Pub) during the grain filling stage, whereas all parameters decreased significantly in drought sensitive variety Zhengyin 1 (Zhe). Grain 14C-photosynthate distribution rate fell by 3.8% in Pub and increased by 3.9% in Zhe. After harvest, the water-use efficiency of Zhe dropped by 18.7% under water deficit. Rubisco activity in ear organs declined significantly under water deficit, whereas activity of C4 pathway enzymes was significantly enhanced, especially that of phosphoenolpyruvate carboxylase and NADP-malate dehydrogenase. Water deficit exerted lesser influence on spike photosynthesis in Pub. Ear organs exhibited delayed senescence. Accumulation of photosynthetic carbon assimilates in ear bracts occurred mainly during the early grain filling and photosynthates were transported in the middle of grain filling. C4 pathway enzymes seem to play an important function in ear photosynthesis. We speculate that the high enzyme activity of the C4 pathway and the increased capacity of photosynthetic carbon assimilate transport were the reasons for the drought tolerance characteristics of ears., S. Jia, J. Lv, S. Jiang, T. Liang, C. Liu, Z. Jing., and Obsahuje bibliografii