The relationship between weighted Lipschitz functions and analytic Bloch spaces has attracted much attention. In this paper, we define harmonic ω-α-Bloch space and characterize it in terms of \omega \left( {{{\left( {1 - {{\left| x \right|}^2}} \right)}^\beta }{{\left( {1 - {{\left| y \right|}^2}} \right)}^{\alpha - \beta }}} \right)\left| {\frac{{f\left( x \right) - f\left( y \right)}}{{x - y}}} \right| and \omega \left( {{{\left( {1 - {{\left| x \right|}^2}} \right)}^\beta }{{\left( {1 - {{\left| y \right|}^2}} \right)}^{\alpha - \beta }}} \right)\left| {\frac{{f\left( x \right) - f\left( y \right)}}{{\left| x \right|y - x'}}} \right| where ω is a majorant. Similar results are extended to harmonic little ω-α-Bloch and Besov spaces. Our results are generalizations of the corresponding ones in G.Ren, U.Kähler (2005)., Xi Fu, Bowen Lu., and Obsahuje seznam literatury