Let G be a finite group. The intersection graph ΔG of G is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper nontrivial subgroups of G, and two distinct vertices X and Y are adjacent if X ∩ Y ≠ 1, where 1 denotes the trivial subgroup of order 1. A question was posed by Shen (2010) whether the diameters of intersection graphs of finite non-abelian simple groups have an upper bound. We answer the question and show that the diameters of intersection graphs of finite non-abelian simple groups have an upper bound 28. In particular, the intersection graph of a finite non-abelian simple group is connected., Xuanlong Ma., and Obsahuje seznam literatury