To determine whether PHEMA [poly(2-hydroxyethylmethacrylate)] is suitable for portal vein embolization in patients scheduled to right hepatectomy and whether it is as effective as the currently used agent (a histoacryl/lipiodol mixture). Two groups of nine patients each scheduled for extended right hepatectomy for primary or secondary hepatic tumor, had right portal vein embolization in an effort to induce future liver remnant (FLR) hypertrophy. One group had embolization with PHEMA, the other one with the histoacryl/lipiodol mixture. In all patients, embolization was performed using the right retrograde transhepatic access. Embolization was technically successful in all 18 patients, with no complication related to the embolization agent. Eight patients of either group developed FLR hypertrophy allowing extended right hepatectomy. Likewise, one patient in each group had recanalization of a portal vein branch. Hist ology showed that both embolization agents reach the periphery of portal vein branches, with PHEMA penetrating somewhat deeper into the periphery. PHEMA has been shown to be an agent suitable for embolization in the portal venous system comparable with existing embolization agent (histoacryl/lipiodol mixture)., J. H. Peregrin, R. Janoušek, D. Kautznerová, M. Oliverius, E. Sticová, M. Přádný, J. Michálek., and Obsahuje bibliografii
Spinal cord injury results in a permanent neurological deficit due to tissue damage. Such a lesion is a barrier for “communication” between the brain and peripheral tissues, effectors as well as receptors. One of the primary goal s of tissue engineering is to bridge the spinal cord injury and re-establish the damaged connections. Hydrogels are biocompatible implants used in spinal cord injury repair. They can create a permissive environment and bridge the lesion cavities by providing a scaffold for the regeneration of neurons and their axons, glia and other tissue elements. The advantage of using artificial materials is the possibility to modify their physical and chemical properties in order to develop the best implant suitable for spinal cord injury repair. As a result, several types of hydrogels have been tested in experimental studies so far. We review our work that has been done during the last 5 years with various types of hydrogels and their applications in experimental spinal cord injury repair., A. Hejčl, P. Lesný, M. Přádný, J. Michálek, P. Jendelová, J. Štulík, E. Syková., and Obsahuje bibliografii a bibliografické odkazy