An information-theoretic approach was used to evaluate non-native freshwater fish species introduced to insular habitats of Hawaii and Guam comparing successful establishments vs. failures. Since the late 1800s, as many as 81 non-native freshwater fish species have been recorded as introduced to Hawaii and Guam (combined) and 50 (62%) of these are documented as having one or more established populations. We examined eleven independent variables to investigate establishment success by creating 21 a priori logistic regression models ranked using Akaike's Information Criterion adjusted for small sample size. An additional eight post-hoc models were included that comprised the best a priori model and various combinations of individual variables. The best overall model of establishment probability included effects of taxonomic affinity (family membership), prior establishment success on other tropical islands, and hypoxia tolerance. Establishment success in Hawaii and Guam was highest for those species established on many other islands, and according to our best model air-breathing fishes were more likely to become established. Six fish families, each with from three to 18 species introduced to Pacific islands, were highly successful at establishment: Cichlidae (16 established of 18 species introduced), Poeciliidae (seven of eight), Cyprinidae (four of seven), Centrarchidae (four of four), Clariidae (three of three), and Loricariidae (three of four). Those that successfully established include both small and moderately large-bodied taxa, while representing a diverse array of other morphological and life-history traits. Pathways and motives associated with fish introductions in the Pacific have been linked to desires to develop aquaculture, enhance wild stocks of food, sport, and bait fishes, for use as biological control agents, or are linked to the ornamental fish trade. We found that many established species were introduced via multiple pathways (up to eight) and our analyses suggest that the combination of prior establishment success on other tropical islands and presence of non-native fishes in multiple pathways was indicative of high propagule pressure. Our study results and conclusions on Pacific tropical island introductions are in general agreement with previous studies on non-native freshwater fishes in other regions of the world and similar to observations in continental ecosystems and temperate zones.