In this paper we prove that the maximal operator $$\tilde {\sigma }^{\kappa ,*}f:=\sup _{n\in {\mathbb P}}\frac {|{\sigma }_n^\kappa f|}{\log ^{2}(n+1)},$$ where ${\sigma }_n^\kappa f$ is the $n$-th Fejér mean of the Walsh-Kaczmarz-Fourier series, is bounded from the Hardy space $H_{1/2}( G) $ to the space $L_{1/2}( G).$.