We revisit the proof of existence of weak solutions of stochastic differential equations with continuous coeficients. In standard proofs, the coefficients are approximated by more regular ones and it is necessary to prove that: i) the laws of solutions of approximating equations form a tight set of measures on the paths space, ii) its cluster points are laws of solutions of the limit equation. We aim at showing that both steps may be done in a particularly simple and elementary manner.
The paper deals with three issues. First we show a sufficient condition for a cylindrical local martingale to be a stochastic integral with respect to a cylindrical Wiener process. Secondly, we state an infinite dimensional version of the martingale problem of Stroock and Varadhan, and finally we apply the results to show that a weak existence plus uniqueness in law for deterministic initial conditions for an abstract stochastic evolution equation in a Banach space implies the strong Markov property.
We study ergodic properties of stochastic geometric wave equations on a particular model with the target being the 2D sphere while considering only solutions which are independent of the space variable. This simplification leads to a degenerate stochastic equation in the tangent bundle of the 2D sphere. Studying this equation, we prove existence and non-uniqueness of invariant probability measures for the original problem and obtain also results on attractivity towards an invariant measure. We also present a structure-preserving numerical scheme to approximate solutions and provide computational experiments to motivate and illustrate the theoretical results., Ľubomír Baňas, Zdzisłlaw Brzeźniak, Mikhail Neklyudov, Martin Ondreját, Andreas Prohl., and Obsahuje seznam literatury