Plant response to the combination of two or more abiotic stresses is different than its response to the same stresses singly. The response of maize (Zea mays L.) photosynthesis, growth, and development processes were examined under sunlit plant growth chambers at three levels of each day/night temperatures (24/16°C, 30/22°C, and 36/28°C) and UV-B radiation levels (0, 5, and 10 kJ m-2 d-1) and their interaction from 4 d after emergence to 43 d. An increase in plant height, leaf area, node number, and dry mass was observed as temperature increased. However, UV-B radiation negatively affected these processes by reducing the rates of stem elongation, leaf area expansion, and biomass accumulation. UV-B radiation affected leaf photosynthesis mostly at early stage of growth and tended to be temperature-dependent. For instance, UV-B radiation caused 3-15% decrease of photosynthetic rate (PN) on the uppermost, fully expanded leaves at 24/16°C and 36/28°C, but stimulated P N about 5-18% at 30/22°C temperature. Moreover, the observed UV-B protection mechanisms, such as accumulation of phenolics and waxes, exhibited a significant interaction among the treatments where these compounds were relatively less responsive (phenolics) or more responsive (waxes) to UV-B radiation at higher temperature treatments or vice versa. Plants exposed to UV-B radiation produced more leaf waxes except at 24/16°C treatment. The detrimental effect of UV-B radiation was greater on plant growth compared to the photosynthetic processes. Results suggest that maize growth and development, especially stem elongation, is highly sensitive to current and projected UV-B radiation levels, and temperature plays an important role in the magnitude and direction of the UV-B mediated responses., S. K. Singh, K. R. Reddy, V. R. Reddy, W. Gao., and Obsahuje bibliografii
Increase in both atmospheric CO2 concentration [CO2] and associated warming are likely to alter Earths' carbon balance and photosynthetic carbon fixation of dominant plant species in a given biome. An experiment was conducted in sunlit, controlled environment chambers to determine effects of atmospheric [CO2] and temperature on net photosynthetic rate (P N) and fluorescence (F) in response to internal CO2 concentration (C i) and photosynthetically active radiation (PAR) of the C4 species, big bluestem (Andropogon gerardii Vitman). Ten treatments were comprised of two [CO2] of 360 (ambient, AC) and 720 (elevated, EC) µmol mol-1 and five day/night temperature of 20/12, 25/17, 30/22, 35/27 and 40/32 °C. Treatments were imposed from 15 d after sowing (DAS) through 130 DAS. Both F-P N/Ci and F-P N/PAR response curves were measured on top most fully expanded leaves between 55 and 75 DAS. Plants grown in EC exhibited significantly higher CO2-saturated net photosynthesis (Psat), phosphoenolpyruvate carboxylase (PEPC) efficiency, and electron transport rate (ETR). At a given [CO2], increase in temperature increased P sat, PEPC efficiency, and ETR. Plants grown at EC did not differ for dark respiration rate (RD), but had significantly higher maximum photosynthesis (P max) than plants grown in AC. Increase in temperature increased Pmax, RD, and ETR, irrespective of the [CO2]. The ability of PEPC, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosystem components, derived from response curves to tolerate higher temperatures (>35 °C), particularly under EC, indicates the ability of C4 species to sustain photosynthetic capacity in future climates. and V. G. Kakani, G. K. Surabhi, K. R. Reddy.