The impact of floodplain hydrology on the in-stream dissolved oxygen dynamics and the relation between dissolved oxygen and water temperature are investigated. This has been done by examining the time series of dissolved oxygen and water temperature coupled with meteorological and hydrological data obtained from two lowland rivers having contrasting hydrological settings. Spectral analysis of long-term oxygen variations in a vegetated river revealed a distinct scaling regime with slope ‘-1’ indicating a self-similar behaviour. Identical slopes were obtained for water temperature and water level. The same power-law behaviour was observed for an unvegetated river at small timescales revealing the underlying scaling behaviour of dissolved oxygen regime for different types of rivers and over various time scales. The results have shown that the oxygenation of a vegetated river is strongly related to its thermal regime and flow conditions. Moreover, analysis of short-term fluctuations in the unvegetated river demonstrated that physical factors such as rainfall and backwaters play a substantial role in the functioning of this ecosystem. Finally, the results show that the relation between water temperature and dissolved oxygen concentration at the diurnal timescale exhibits a looping behaviour on the variable plot. The findings of this study provide an insight into the sensitivity of rivers to changing hydro-physical conditions and can be useful in the assessment of environmental variability.
Two sets of triangular hydrographs were generated in a 12-m-long laboratory flume for two sets of initial bed conditions: intact and water-worked gravel bed. Flowrate ranging from 0.0013 m3 s–1 to 0.0456 m3 s–1, water level ranging from 0.02 m to 0.11 m, and cumulative mass of transported sediment ranging from 4.5 kg to 14.2 kg were measured. Then, bedload transport rate, water surface slope, bed shear stress, and stream power were evaluated. The results indicated the impact of initial bed conditions and flow unsteadiness on bedload transport rate and total sediment yield. Difference in ratio between the amount of supplied sediment and total sediment yield for tests with different initial conditions was observed. Bedload rate, bed shear stress, and stream power demonstrated clock-wise hysteretic relation with flowrate. The study revealed practical aspects of experimental design, performance, and data analysis. Water surface slope evaluation based on spatial water depth data was discussed. It was shown that for certain conditions stream power was more adequate for the analysis of sediment transport dynamics than the bed shear stress. The relations between bedload transport dynamics, and flow and sediment parameters obtained by dimensional and multiple regression analysis were presented.