Intense transport of sediment is studied in flows of steep slopes. Transport- and friction formulae suitable for flows at high shear stress above eroded bed are discussed. The formulae are further incorporated to a proposed simple model for open-channel flow with gradually varied transport of sediment. Two variants of the formulae are used alternatively in the model. Tilting-flume experiments are described that provided steady-flow data suitable for a validation of the formulae and unsteady-sediment-transport data for a validation of the designed model of gradually varied transport. A comparison of experimental results with formulae predictions and model simulations shows a very reasonable agreement for both variants of the transport and friction formulae. and Obsahuje seznam literatury a znaků
Optimization methods are used to estimate parameters required for routing floods through open compound channels. Besides initial and boundary flow conditions, data required especially include, crosssectional area (A) of flow and conveyance (K) as functions of flow depth (y) for a representative crosssection of the study reach. Thus, instead of optimizing upon channel's geometric and hydraulic parameters, optimization is performed upon non-physical parameters in assumed A(y) and K(y) relationships. The optimization method selected for this application is the Nelder and Mead Simplex Algorithm. The objective function is expressed in terms of the relative differences between observed and simulated stages and discharges, which are evaluated based on the complete numerical solution of St Venant equations. This approach to formulating the optimization problem was applied to unsteady flow data sets for an experimental reach of the River Main in Northern Ireland. Based on statistical analysis, simulated and observed stages were found to be in good agreement. and Parametre potrebné pre kvantifikáciu transformácie povodňových vĺn v otvorených, zložených kanáloch, boli určené optimalizačnou metódou. Okrem počiatočných a okrajových podmienok sú potrebné ďalšie údaje, vrátane plochy priečneho rezu prúdom (A), ako aj vodivosť časti toku (K) ako funkcie hĺbky (y) pre reprezentatívny priečny rez. Namiesto optimalizácie geometrických a hydraulických parametrov kanála, optimalizácia sa vykonala pre nefyzické parametre, predpokladajúc závislosti A(y) a K(y). Vybranou metódou optimalizácie je Nelderov a Meadov Simplex Algoritmus. Funkcia je vyjadrená pomocou relatívnych rozdielov medzi pozorovanými a simulovanými vodnými stavmi a prietokmi, ktoré boli vyčíslené numerickým riešením rovníc St. Venanta. Tento spôsob formulácie optimalizačného problému bol aplikovaný na údaje pre neustálené prúdenie v experimentálnom priamom úseku rieky Main (River Main) v Severnom Írsku. Štatistickou analýzou bolo zistené, že simulované a merané vodné stavy boli veľmi blízke.
Two sets of triangular hydrographs were generated in a 12-m-long laboratory flume for two sets of initial bed conditions: intact and water-worked gravel bed. Flowrate ranging from 0.0013 m3 s–1 to 0.0456 m3 s–1, water level ranging from 0.02 m to 0.11 m, and cumulative mass of transported sediment ranging from 4.5 kg to 14.2 kg were measured. Then, bedload transport rate, water surface slope, bed shear stress, and stream power were evaluated. The results indicated the impact of initial bed conditions and flow unsteadiness on bedload transport rate and total sediment yield. Difference in ratio between the amount of supplied sediment and total sediment yield for tests with different initial conditions was observed. Bedload rate, bed shear stress, and stream power demonstrated clock-wise hysteretic relation with flowrate. The study revealed practical aspects of experimental design, performance, and data analysis. Water surface slope evaluation based on spatial water depth data was discussed. It was shown that for certain conditions stream power was more adequate for the analysis of sediment transport dynamics than the bed shear stress. The relations between bedload transport dynamics, and flow and sediment parameters obtained by dimensional and multiple regression analysis were presented.
The impact of lateral momentum transfer (LMT) on channel conveyance is examined through applications of a new mathematical model for routing unsteady flows in compound channels. The model accounts for LMT through three parameters that relate: (i) 'actual' to 'isolated' sub-section discharge, (ii) main channel to flood plain lengths between stations, and (iii) flood plain to main channel depths. The model was applied to route a series of flood events in a hypothetical compound channel consisting of a deep smooth main channel between two wide and rough flood plain zones. The routing exercise was repeated with and without LMT in the analysis. Three empirical methods to account for LMT were investigated by comparing their corresponding simulated stage and discharge hydrographs. In general, LMT was found to have little impact on simulated stage hydrographs, however, for the case of small flood plain flows, LMT was responsible for some attenuation in the discharge hydrographs. and Príspevok skúma vplyv priečnej zložky hybnosti na prúdenie použitím nového matematického modelu neustáleného pohybu v zložených otvorených kanáloch. Použitý model zohľadňuje efekt priečnej hybnosti prostredníctvom troch parametrov, daných pomerom: (i) aktuálneho a ''oddeleného'' prietoku v danom úseku koryta, (ii) dĺžkou inundácie a dĺžkou úseku a (iii) plochy inundácie a plochy hlavného koryta v úseku. Model bol aplikovaný na výpočet niekoľkých povodňových udalostí v hypotetickom zloženom kanále s hladkým hlavným (hlbokým) korytom s obojstrannou drsnou inundáciou. Výpočty sa realizovali s akceptovaním a s vynechaním efektu priečnej hybnosti. Pri tom boli skúmané tri empirické metódy výpočtu priečnej hybnosti porovnávaním výsledkov na prietokových a hladinových hydrografoch. Výsledky preukázali, že účinok priečnej hybnosti sa ukázal len pri prietokoch, pri čom ich vplyv na priebeh hladín bol nevýznamný. Okrem toho výpočty pre korytá s malou inundáciou ukázali, že priečna hybnosť spôsobuje zoslabenie prietokov.
This study deals with the numerical solution of a 2D unsteady flow of a compressible viscous fluid in a channel for low inlet airflow velocity. The unsteadiness of the flow is caused by a prescribed periodic motion of a part of the channel wall with large amplitudes, nearly closing the channel during oscillations. The channel is a simplified model of the glottal space in the human vocal tract and the flow can represent a model of airflow coming from the trachea, through the glottal region with periodically vibrating vocal folds to the human vocal tract.
The flow is described by the system of Navier-Stokes equations for laminar flows. The numerical solution is implemented using the finite volume method (FVM) and the predictor-corrector MacCormack scheme with Jameson artificial viscosity using a grid of quadrilateral cells. Due to the motion of the grid, the basic system of conservation laws is considered in the Arbitary Lagrangian-Eulerian (ALE) form.
The authors present the numerical simulations of flow fields in the channel acquired from a program developed exclusively for this purpose. The numerical results for unsteady flows in the channel are presented for inlet Mach number M∞ = 0.012, Reynolds number Re∞ = 5x103 and the wall motion frequency 100 Hz. and Obsahuje seznam literatury