We studied the water balance, body fluid osmolality and survival of the oribatid mite, Pergalumna nervosa, when exposed to drought in field and laboratory experiments. In a replicated field experiment we artificially lowered the soil water content by putting roofs over selected plots, which reduced soil water potential to levels well below the permanent wilting percentage for plants (i.e. below -1.5 MPa). Even though a slight decrease in the abundance of P. nervosa (only found in the 0-5 cm soil layer) was recorded during the most severe drought stress (ca. -3.5 MPa), the majority of adult mites clearly survived these conditions for 3 weeks in the field without migrating to deeper soil layers. Exposing field collected adults in laboratory experiments simulating even more severe drought conditions revealed that P. nervosa can survive several weeks of gradually increasing drought stress (down to -7 MPa) with moderate water loss. The osmolality of body fluids increased as dehydration progressed, but apparently as a result of simple up-concentration of solutes and not the de novo synthesis of protective osmolytes. We compare and discuss these results in the light of what is known about other arthropods., Stine Slotsbo, Jesper G. Sørensen, Josef Stary, Martin Holmstrup., and Obsahuje bibliografii