Climatic conditions can modify the life history traits, population dynamics and biotic interactions of species. Therefore, adaptations to environmental factors such as temperature are crucial for species survival at different altitudes. These adaptive responses, genetically fixed or plastic (phenotypic plasticity), can be determined by physiological thresholds and might vary between sexes. The objective of this study was to determine whether the life history traits of the European Map butterfly (Araschnia levana) differ at different altitudes. A field experiment was carried out along an altitudinal gradient from 350 to 1010 m a.s.l. in a low mountainous region (Bavaria, Germany). 540 butterfly larvae were placed at different altitudes in 18 planted plots of their larval host plant, the stinging nettle (Urtica dioica). After three weeks the larvae were collected and reared under laboratory conditions. Developmental traits of the butterflies, mortality and percentage parasitism were measured. Larval development was generally slower at higher altitudes and lower temperatures and larval weight decreased with increasing altitude and decreasing temperature. However, there were no significant differences in pupation, adult lifespan and percentage mortality at the different altitudes and temperatures. Female larvae were heavier than those of males, and the pupal and adult lifespans were longer in females than in males. However, male and female butterflies reacted similarly to altitude and temperature (no significant interactions). None of the 188 larvae collected were parasitized. In conclusion, the phenotypic plasticity of European Map butterfly has enabled it to adapt to different temperatures, but the strategies of the sexes did not differ. and Kathrin D. Wagner, Jochen Krauss, Ingolf Steffan-Dewenter.