Telmisartan is an angiotensin receptor blocker (ARB) and a selective peroxisome proliferator activated receptor gamma (PPARG) modulator. Recently, we tested metabolic effects of telmisartan (5 mg/kg body weight) in spontaneously hypertensive rats (SHR) fed a diet containing 60 % fructose, a widely used model of the metabolic syndrome. Surprisingly, we observed acute toxic effects of telmisartan. Rats lost body weight rapidly and died within 2 to 3 weeks due to bleeding into the upper gastrointestinal tract. SHR fed a high fructose diet and treated with telmisartan exhibited rapid decrease in blood pressure when compared to the SHR fed a high fructose diet and treated with valsartan. Concentrations of both unconjugated telmisartan and telmisartan glucuronide in the liver of SHR rats fed a high fructose diet were approximately 4 fold higher when compared to Brown Norway (BN) rats fed the same diet. Plasma concentrations of unconjugated telmisartan in the SHR were about 5 fold higher when compared to BN rats while plasma levels of telmisartan glucuronide were similar between the strains. Testing of other rat strains, diets, and the ARB valsartan showed that toxic effects of telmisartan in combination with high fructose diet are specific for the SHR. These results are consistent with the possibility that in some circumstances, SHR are predisposed to telmisartan toxicity possibly because of a genetically determined disturbance in telmisartan metabolism.
The present study was performed to evaluate the role of an interaction between the endothelin (ET) and the renin-angiotensin systems (RAS) in the development and maintenance of hypertension and in hypertension-associated end-organ damage in heterozygous male and female transgenic rats harboring the mouse Ren-2 renin gene (TGR). Twenty-eight days old heterozygous TGR and age-matched transgene-negative normotensive Hannover Sprague-Dawley rats (HanSD) were randomly assigned to groups with normal-salt (NS) or high-salt (HS) intake. Nonselective ETA/ETB receptor blockade was achieved with bosentan (100 mg.kg-1.day-1). All male and female HanSD as well as heterozygous TGR on NS exhibited 100 % survival rate until 180 days of age (end of experiment). HS diet in heterozygous TGR induced a transition from benign to malignant phase hypertension. The survival rates in male and in female heterozygous TGR on the HS diet were 46 % and 80 %, respectively, and were significantly improved by administration of bosentan to 76 % and 97 %, respectively. Treatment with bosentan did not influence either the course of hypertension (measured by plethysmography in conscious animals) or the final levels of blood pressure (measured by a direct method in anesthetized rats) in any of the experimental groups of HanSD or TGR. Administration of bosentan in heterozygous TGR fed the HS diet markedly reduced proteinuria, glomerulosclerosis and attenuated the development of cardiac hypertrophy compared with untreated TGR. Our data show that the ET receptor blockade markedly improves the survival rate and ameliorates end-organ damage in heterozygous TGR exposed to HS diet. These findings indicate that the interaction between the RAS and ET systems plays an important role in the development of hypertension-associated end-organ damage in TGR exposed to salt-loading.
Our studies in hypertensive Ren-2 transgenic rats (TGR) demonstrated that chronic administration of atrasentan (ETA receptor antagonist) decreased blood pressure by reduced Ca2+ influx through L-type voltage-dependent calcium channels (L-VDCC) and attenuated angiotensin II-dependent vasoconstriction. We were interested whether bosentan (nonselective ETA/ETB receptor antagonist) would have similar effects. Young 4-week-old (preventive study) and adult 8-weekold (therapeutic study) heterozygous TGR and their normotensive Hannover Sprague-Dawley (HanSD) controls were fed normal-salt (NS, 0.6 % NaCl) or high-salt (HS, 2 % NaCl) diet for 8 weeks. An additional group of TGR fed HS was treated with bosentan (100 mg/kg/day). Bosentan had no effect on BP of TGR fed highsalt diet in both the preventive and therapeutic studies. There was no difference in the contribution of angiotensin II-dependent and sympathetic vasoconstriction in bosentan-treated TGR compared to untreated TGR under the condition of high-salt intake. However, bosentan significantly reduced NO-dependent vasodilation and nifedipine-sensitive BP component in TGR on HS diet. A highly important correlation of nifedipine-induced BP change and the BP after L-NAME administration was demonstrated. Although bosentan did not result in any blood pressure lowering effects, it substantially influenced NO-dependent vasodilation and calcium influx through L-VDCC in the heterozygous TGR fed HS diet. A significant correlation of nifedipine-induced BP change and the BP after L-NAME administration suggests an important role of nitric oxide in the closure of L-type voltage dependent calcium channels.
The present study was performed to evaluate the effects of sodium intake and of chronic cyclooxygenase-2 (COX-2) inhibition on systolic blood pressure (SBP) in heterozygous male transgenic rats harboring the mouse Ren-2 renin gene (TGR) and in transgene-negative normotensive Hannover Sprague-Dawley (HanSD). Twenty-eight days old TGR and
HanSD were randomly assigned to groups fed either normal salt (NS) or low sodium (LS) diets. COX-2 blockade was achieved with NS-398 (1 mg.kg
-1.day-1 in drinking water). During an experimental period of 26 days, SBP was repeatedly measured by tail plethysmography in conscious animals. We found that the LS diet prevented the development of hypertension in TGR and did not change SBP in HanSD. Low sodium intake also prevented proteinuria and cardiac hypertrophy in TGR. On the other hand, irrespective of sodium intake chronic COX-2 inhibition did not
alter the course of SBP in either TGR or HanSD. The present data indicate that TGR exhibit an important salt-sensitive component in the developmental phase of hypertension. They also suggest that systemic COX-2-derived prostaglandins do not act as vasodilatory counterregulatory agents in TGR in which an exaggerated vascular responsiveness to angiotensin II is assumed as the pathophysiological mechanism in the development of hypertension.
The insertion of mouse renin gene (Ren-2) into the genome of
normotensive rats causes a spontaneous rise of blood pressure
(BP), leading to an angiotensin II (Ang II)-dependent form of
hypertension in transgenic (mRen-2)27 rats (TGR). However,
enhanced sympathetic BP component was demonstrated in
heterozygous TGR aged 20 weeks. In the present study we used
another model, i.e. Cyp1a1-Ren-2 transgenic rats (iTGR) in which
hypertension can be induced by natural xenobiotic indole-3
carbinol (I3C) added to the diet. We investigated whether the
development of high blood pressure (BP) in 5-month-old iTGR
animals fed I3C diet for 10 days is solely due to enhanced
Ang II-dependent vasoconstriction or whether enhanced
sympathetic vasoconstriction also participates in BP maintenance
in this form of hypertension. Using acute sequential blockade of
renin-angiotensin system (RAS), sympathetic nervous system
(SNS) and NO synthase (NOS) we have demonstrated that the
observed gradual increase of BP in iTGR fed I3C diet was entirely
due to the augmentation of Ang II-dependent BP component
without significant changes of sympathetic BP component. Thus,
the hypertension in iTGR resembles to that of homozygous TGR
in which high BP was entirely dependent on Ang II-dependent
vasoconstriction. Moreover, our measurements of acute BP
response to Rho kinase inhibitor fasudil in animals subjected to
a combined blockade of RAS, SNS and NOS indicated the
attenuation of basal calcium sensitization in both iTGR and
homozygous TGR.