Glucose is molecule usually studied in relation to metabolism. Except for this traditional view, it is known that under certain conditions glucose can serve as a signal molecule for the circadian system. The circadian system is entrained by relevant synchronizing cues that can be tissue-dependent. Central oscillator is synchronized mainly by light-dark cycle, while peripheral oscillators can be entrained by food intake. Glucose transport in the organism is controlled by insulin dependent and independent mechanism. Therefore, we employed streptozotocin- induced diabetes to elucidate the influence of metabolic changes on glucose transporter ( glut1, glut4 ) 24-h expression profile in peripheral oscillators in tissues, inside (frontal cortex, cerebellum) and outside (heart) the blood-b rain barrier. Diabetes was induced by streptozotocin inje ction. Seventeen days later, sampling was performed during a 24-h cycle. Gene expression was measured using real-time PCR. We observed down- regulation of glut1 and glut4 expression in the heart of diabetic rats. The expression of glut1 and glut4 in brain areas was not down-regulated, however, we ob served trend to phase advance in glut1 expression in the cerebellum. These results may indicate higher glucose levels in diabetic brain, which might influence regulation of clock gene expressi on in different manner in brain compared to periphery., D. Šoltésová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Under physiological conditions the mammalian circadian system is synchronized to a cyclic environment. The central oscillator in the suprachiasmatic nuclei (SCN) responds predominantly to an external light (L) dark (D) cycle. Peripheral oscillators are more efficiently synchronized by metabolic cues. When the circadian system is exposed to opposing synchronizing cues, peripheral oscillators uncouple from the SCN. To consider influence of phase advances and delays in light regimens mimicking shift work, we analyzed the expression of clock genes (per2, bmal1) and natriuretic peptides (anp, bnp) in the heart of male rats. Experimental groups were exposed to a rotating LD regimen with either 8 h phase advance or delay for 11 weeks. Samples were taken for a 24 h cycle in 4 h intervals. Peripheral oscillators responded to rotating phase advance by decreasing rhythm robustness, while phase delay mostly influenced the phase angle between the acrophase of rhythmic gene expression and the external LD cycle. The expression of anp was arrhythmic in the heart of control rats and was not influenced by rotating LD regimens. The expression of bnp showed a daily rhythm with a nadir during the active phase. The daily rhythm in bnp expression diminished under rotating LD regimen conditions., I. Herichová, J. Ambrušová, L'. Molčan, A. Veselá, P. Svitok, M. Zeman., and Obsahuje bibliografii