We study the relations between finitistic dimensions and restricted injective dimensions. Let R be a ring and T a left R-module with A = EndRT. If RT is selforthogonal, then we show that rid \left ( T_{A} \right )\leqslant findim(A_{A})\leqslant findim \left ( _{R}T \right )+rid\left ( T_{A} \right ). Moreover, if R is a left noetherian ring and T is a finitely generated left R-module with finite injective dimension, then rid \left ( T_{A} \right )\leqslant findim(A_{A})\leqslant fin.inj.dim \left ( _{R}R \right )+rid\left ( T_{A} \right ). Also we show by an example that the restricted injective dimensions of a module may be strictly smaller than the Gorenstein injective dimension., Dejun Wu., and Obsahuje seznam literatury