The spontaneously hypertensive rat (SHR is the most widely used animal model of essential hypertensio and left ventricular hypertrophy. Catecholamines play an important role in the pathogenesis of both essential hypertension in humans and in the SHR. Recently, we obtained evidence that the SHR harbors a variant in the gene for dopamine beta hydroxylase (Dbh) that is associated with reduced adrenal expression of Dbh mRNA and reduced DBH enzymatic activity which correlated negatively with blood pressure. In the current study, we used a transgenic experiment to test the hypothesis that reduced
Dbh expression predisposes the SHR to hypertension and that augmentation of Dbh expression would reduce blood pressure. We derived 2 new transgenic SHR-Dbh lines expressing Dbh cDNA under control of
the Brown Norway (BN) wild type promoter. We found modestly increased adrenal expression of Dbh in transgenic rats versus SHR non
-transgenic controls that was associated with reduced adrenal levels of dopamine and increased plasma levels of norepinephrine and epinep
hrine. The observed changes in catecholamine metabolism were associated with increased blood pressure and left ventricular mass in both transgenic lines. We did not observe any consistent changes in brainstem levels of catecholamines or of mRNA levels of Dbh in the transgenic strains. Contrary to our initial expections, these findings are
consistent with the possibility that genetically determined decreases in adrenal expression and activity of DBH do not represent primary determinants of increased blood pressure in the SHR model.
In the current review, we summarize results of genetic analyses of “metabolic syndrome” in the spontaneously hypertensive rat (SHR). These results include (1) linkage analyses in the HXB/BXH recombinant inbred (RI) strains derived from SHR and Brown Norway (BN-Lx) strains which revealed quantitative trait loci (QTL) for hemodynamic and metabolic traits on several chromosomes, (2) genetic isolation of these putative QTL within differential chromosome segments of SHR.BN congenic strains, (3) detailed mapping of these QTL within limited chromosome
segments of SHR.BN congenic sublines, (4) sequencing of selected positional candidate genes which revealed important mutations in the Cd36 and Srebp1 SHR genes, (5) functional tests of these candidate genes in SHR transgenic lines, and (6) integrated gene expression profiling and linkage mapping in RI strains which will be used to identify co-regulated genes and to determine co-segregation of transcriptional profiles with physiological and pathophysiological phenotypes.
Dyslipidemia and inflammation play an important role in the pathogenesis of cardiovascular and liver disease. Fenofibrate has a well-known efficacy to reduce cholesterol and triglycerides. Combination with statins can ameliorate hypolipidemic and anti-inflammatory effects of fibrates. In the current study, we tested the anti-inflammatory and metabolic effects of fenofibrate alone and incombination with rosuvastatin in a model of inflammation and metabolic syndrome, using spontaneously hypertensive
rats expressing the human C-reactive protein transgene (SHR-CRP transgenic rats). SHR-CRP rats treated with fenofibrate alone (100 mg/kg body weight) or in combination with rosuvastatin (20 mg/kg body weight) vs. SHR-CRP untreated controls showed increased levels of proinflammatory marker IL6, increased concentrations of ALT, AST and ALP, increased oxidative stress in the liver and necrotic changes of the liver. In addition, SHR-CRP rats treated with fenofibrate, or with fenofibrate combined with rosuvastatin vs. untreated controls, exhibited increased serum triglycerides and reduced HDL cholesterol, as well as reduced hepatic triglyceride, cholesterol and glycogen concentrations. These findings suggest that in the presence of high levels of human CRP, fenofibrate can induce liver damage even in combination with rosuvastatin. Accordingly, these results caution against the possible hepatotoxic effects of fenofibrate in patients with high levels of CRP.
Brown adipose tissue (BAT) plays an important role in lipid and glucose metabolism in rodents and possibly also in humans. Identification of genes responsible for BAT function would shed light on underlying pathophysiological mechanisms of metabolic disturbances. Recent linkage analysis in the BXH/HXB recombinant inbred (RI) strains, derived from Brown Norway (BN) and spontaneously hypertensive rats (SHR), identified two closely linked quantitative trait loci (QTL) associated with glucose oxidation and glucose incorporation into BAT lipids in the vicinity of Wars2 (tryptophanyl tRNA synthetase 2 (mitochondrial)) gene on chromosome 2. The SHR harbors L53F WARS2 protein variant that was associated with reduced angiogenesis and Wars2 thus represents a prominent positional candidate gene. In the current study, we validated this candidate as a quantitative trait gene (QTG) using transgenic rescue experiment. SHR-Wars2 transgenic rats with wild type Wars2 gene when compared to SHR, showed more efficient
mitochondrial proteosynthesis and increased mitochondrial respiration, which was associated with increased glucose oxidation and incorporation into BAT lipids, and with reduced weight of visceral fat. Correlation analyses in RI strains showed that increased activity of BAT was associated with amelioration of insulin resistance in muscle and white adipose tissue. In summary, these results demonstrate important role of Wars2 gene in regulating BAT function and consequently lipid and glucose metabolism.