A cascade scheme for passivity-based stabilization of a wide class of nonlinear systems is proposed in this paper. Starting from the definitions and basic concepts of passivity-based stabilization via feedback (which are applicable to minimum phase nonlinear systems expressed in their normal forms) a cascade stabilization scheme is proposed for minimum and non-minimum phase nonlinear systems where the constraint of stable zero dynamics imposed by previous stabilization approaches is abandoned. Simulation results of the proposed algorithm are presented to demonstrate its performance.
The problem of pole assignment by state feedback in the class of non-square linear systems is considered in the paper. It is shown that the problem is solvable under the assumption of weak regularizability, a newly introduced concept that can be viewed as a generalization of the regularizability of square systems. Necessary conditions of solvability for the problem of pole assignment are established. It is also shown that sufficient conditions can be derived in some special cases. Some conclusions and prospects for further studies are drawn in the last section.