Mesembryanthemum crystallinum is an annual succulent plant that is being used as an emerging healthy leafy vegetable. To investigate the growth and physiological response of M. crystallinum to artificial lighting, five different light treatments were applied at 150 µmol(photon) m-2 s-1, which were white (W), different rations of red/blue (B) (15, 40, and 70%B), and blue (100%B), respectively. Our results showed that plants could gain as much as edible leaf area and dry mass with a certain ratio of blue (40%) in comparison with W. Plants grown under 100%B resulted in reduced photosynthetic rate, leaf area, and fresh mass compared with W. Adding blue fraction in the light regime enhanced the photosynthetic performance by influencing the amount of chlorophyll (Chl), Chl a/b, and specific leaf area. Under red/blue treatments, the electron transport rate and effective quantum yield of both PSII and PSI increased, while the nitrate content was reduced and flavonoids and total antioxidant capacity were unaffected.
Our study investigated the physiological and biochemical basis for the effects of exogenous phenolic acids on the function of the photosynthetic apparatus and photosynthetic electron transport rate in strawberry seedlings. Potted seedlings of the strawberry (Fragaria × ananassa Duch.) were used. Syringic acid inhibited net photosynthetic rate and water-use efficiency decreased. Additionally, primary quinone electron acceptor of the PSII reaction centre, the PSII reaction centre and the oxygen evolving complex were also impaired. Both the maximum quantum yield of the PSII primary photochemistry and the performance index on absorption basis were depressed, resulting in reduced function of the photosynthetic electron transport chain. Otherwise, low phthalic acid concentrations enhanced photosynthetic capacity, while high concentrations showed opposite effects. Syringic acid exhibited a higher toxic effect than that of phthalic acid which was more evident at higher concentrations., X. F. Lu, H. Zhang, S. S. Lyu, G. D. Du, X. Q. Wang, C. H. Wu, D. G. Lyu., and Obsahuje bibliografii
Low temperature significantly influences chloroplast development and chlorophyll (Chl) biosynthesis, so effect of coldness on Chl content and Chl fluorescence characteristics was investigated in C. bungeana (Chorispora bungeana Fisch. & C.A. Mey). The levels of transcript and protein of an enzymatic step during Chl biosynthesis in response to chilling (4°C) and freezing (-4°C) were also examined in this work. Significant reduction in total Chl content was observed, but the reduction was much less at 4°C than that at -4°C. Moreover, the maximal quantum efficiency of photosystem II (PSII) photochemistry, indicated by Fv/Fm, decreased in the first 12 h, but then started to increase and reached higher levels than the control at 24 h and 48 h at 4°C, but decreased continuously at -4°C. Whereas quantum yield of PSII (ΦPSII) showed no significant difference between the chilling-stressed and the control seedlings, at -4°C, ΦPSII was markedly reduced with the prolonged treatment. In general, there were no significant responses of photochemical quenching (qP) and non-photochemical quenching (NPQ) to cold treatment. Meanwhile, the full-length cDNA of NADPH:protochlorophyllide oxidoreductase (POR, EC 1.3.1.33) was isolated and termed CbPORB (GenBank Accession No. FJ390503). Its transcript and protein content only slightly declined at 4°C, but dramatically reduced at -4°C with the time. These results strongly suggest that CbPORB possesses certain resistant characteristics and is a major player in Chl biosynthesis process involved in plant growth and development of C. bungeana under cold environmental conditions. and Y. H. Li ... [et al.].
One difficulty for quaternion neural networks (QNNs) is that quaternion nonlinear activation functions are usually non-analytic and thus quaternion derivatives cannot be used. In this paper, we derive the quaternion gradient descent, approximated quaternion Gauss-Newton and quaternion Levenberg-Marquardt algorithms for feedforward QNNs based on the GHR calculus, which is suitable for analytic and non-analytic quaternion functions. Meanwhile, we solve a widely linear quaternion least squares problem in the derivation of quaternion Gauss-Newton algorithm, which is more general than the usual least squares probŹlem. A rigorous analysis of the convergence of the proposed algorithms is provided. Simulations on the prediction of benchmark signals support the approach.