The Trophic Cascade Theory has been used to explain the organization of herbivorous insect communities in tropical ecosystems. In addition, the insect community associated with a species of plant can also be determined by the geographical distribution and taxonomic isolation of the plant. In this study, the following predictions about the number of herbivores associated with particular host plants were tested: (i) plant species belonging to large taxonomic groups with broad geographical distributions have a higher number, (ii) the abundance of ants negatively affects herbivore insect diversity, (iii) local plant diversity positively affects chewing herbivore diversity and (iv) local abundance of a specific host plant positively affects the diversity of sucking herbivores. The samples of insect herbivores were collected from 32 plants (16 plants of Erythroxylum suberosum and 16 of Qualea parviflora) by beating. A total of 71 ants (13 species) and 158 herbivorous insects (90 species) were collected from these two species of plants. The richness and abundance of the insect herbivores collected from E. suberosum differed from those collected from Q. parviflora. The abundance of ants negatively affected the diversity of sucking insects associated with E. suberosum. In addition, the interaction between the variables total plant richness per plot and ant abundance affected the diversity of chewing insects associated with E. suberosum. The density of Q. parviflora per plot affected the diversity of associated sucking insects. In addition, the interaction of the variables abundance of ants and abundance of Q. parviflora influenced the diversity of chewing insects. Our results indicate that there is no predominance of bottom-up or top-down forces in the organization of herbivorous insect communities in this area of tropical savanna, but the roles of these forces on insect communities are guild-dependent., Juliana Kuchenbecker, Marcílio Fagundes., and Obsahuje bibliografii