Insect larval development affects adult traits but the biometric relationships are usually poorly understood, including large odonates. In this study, measurements of morphological traits of larvae, exuviae and adults of Anax imperator were recorded. They were used to investigate the effects of early development on adult morphology. Results showed an increase in larval length during the final instar and the length of its exuviae significantly exceeded that of the larva. Length and body mass of teneral adults were strongly related to the length of their exuviae. Adult males were significantly longer than adult females, while both had the same body mass at emergence. Length of teneral adults was negatively related to the date of emergence in both sexes. During maturation, body mass of males only increased slightly whereas that of females increased greatly. Mature specimens were also significantly longer than teneral individuals. Body mass of mature males and length of mature females were both associated with the date of capture. Wing length did not differ between sexes or from data available from Great Britain. This study underscores the importance of taking into account larval growth in order to better understand the adult traits of odonates.
Adult body size is the result of important environmental, maternal and/or genetic effects acting on animals during development. Here we investigate how sexual size dimorphism (SSD) develops in seven species of Odonata: Anax imperator, Cordulegaster boltonii, Onychogomphus uncatus, Oxygastra curtisii (Anisoptera), Cercion lindeni, Ischnura graellsii and Platycnemis acutipennis (Zygoptera). SSD of both the last larval and adult stages of the same individuals, which were reared under laboratory conditions, was measured. The aims were to investigate (i) whether SSD develops during the larval stage, (ii) the direction of larval and adult SSD, and (iii) whether the direction of adult SSD can be predicted by the mating system of a given species (e.g. males of territorial species being larger than females and the opposite for non-territorial species). We found that although larval differences in size may be present between the sexes, these are not necessarily shown in the adult stage (they may change or disappear). Also, the mating system was not related to patterns of adult SSD. Differences in SSD in larvae may be caused by differential use of resources via differential niche-utilisation or sex-specific growth patterns. We highlight the fact that sexual selection favouring large male size and fecundity selection, which selects for large females may be acting on the observed patterns in SSD in adults.