When puparia of the onion maggot Delia antiqua were preexposed to 5°C for 5 days starting at different time points after pupariation, a large increase in survival after exposure to -20°C for 5 days was observed only when pre-exposure was initiated at 3-6 days after pupariation. The increase in cold hardiness was not associated with a large increase in the trehalose content of the puparia. The supercooling point of the puparia naturally decreased from -18 to -27°C in the first three days after pupariation, and pre-exposure to 5°C did not have an additional effect. Thus, factors responsible for the enhancement of cold hardiness by acclimation other than trehalose and supercooling point should be sought. The period of responsiveness to cold acclimation coincided with the time soon after head evagination, which corresponds to "pupation" in lepidopteran insects. The puparia appear to be physiologically flexible for a short time after head evagination, and able to adapt their physiology to the contemporary cold environment.
Oviposition behaviour of Delia radicum is not only influenced by host plant duality but also by the duality of the substrate in which the plant grows. Direct behavioural observations showed that the females partition their visits to a host plant (cauliflower) into ovipositional bouts separated by exploration of the host plant surface. Ovipositional bouts were further partitioned into acts of egg deposition separated by exploration of the substrate. While the mean number of ovipositional bouts per visit (2.6), and eggs laid per egg deposition event (1.4) were stable, the mean number of egg deposition events per ovipositional bout significantly varied (from 2.1 to 7.3) with the duality of the substrate and the physiological state of the female (egg load). Ovipositing females adjusted the final number of eggs laid around the plant during the behavioural stage of substrate exploration. Additional experiments using plant surrogates treated with methanolic extract of Brassica leaves mounted in different substrates showed that: (a) the presence of living Brassica, Hordeum or Allium roots in a substrate enhances the number of eggs laid into this substrate, but females do not discriminate between the different plants; (b) females avoid both wet and dry substrates and prefer the substrates with a dry surface and moist particles directly accessible at a depth of about 5 mm; (c) substrates rich in organic matter are preferred to sand; (d) olfactory perception of volatile chemicals from the substrate must at least partially be responsible for the differences in oviposition in various substrates.
Larvae of Strobilomyia flies (Diptera: Anthomyiidae) are serious pests in conifer-seed orchards because they feed on the seed inside the cones. Figitid parasitoids (Hymenoptera: Cynipoidea) of Strobilomyia larvae in conifer cones are commonly reported but under various generic names. It is argued here that, across the entire Holarctic region, these figitids belong to Amphithectus and perhaps also to Sarothrus (Figitinae), but not to Melanips (Aspicerinae), contrary to some reports. We conclude that the identity of the commonly found figitid associated with conifer cones (Larix and Picea) in Europe and Asia is Amphithectus austriacus (Tavares, 1928) comb. n. This is most likely considering the original description and the host association, although the type specimen of Seitneria austriaca Tavares, 1928 is lost. This species name takes priority over the recently described Amphithectus coriaceus Paretas-Martinez & Pujade-Villar, 2013. Seitneria Tavares, 1928 becomes a new junior synonym of Amphithectus Hartig, 1840, and Amphithectus coriaceus Paretas-Martinez & Pujade-Villar, 2013 becomes a new synonym of Amphithectus austriacus (Tavares, 1928) comb. n.
Specific associations between species frequently occur in ecological interactions. The aim of this study was to determine the preferences of anthomyiid flies of the genus Botanophila for particular species of fungi as sites for laying eggs and as food for both larvae and adults. The associations of their eggs, larvae and flies with the stromata of different species of Epichloë fungi infecting 7 species of grass in Poland were analyzed. Scanning electron microscopy of the surface of their eggs and an analysis of the genetic sequences of their mitochondrial cytochrome oxidase (COII) were used to identify the taxa of the flies studied. Three types of eggs were distinguished based on their shape, colour and the presence of dorsal folds and sculpturing on the shells. Tentatively, these eggs were assigned to the following species: B. laterella, B. phrenione, B. dissecta and B. lobata. COII sequences obtained from larvae that hatched from two of the types of eggs formed three distinct clades associated with the reference sequences for Botanophila phrenione, B. lobata (new to the fauna of Poland) and a putative species, “Taxon 1”. Only one of these flies (B. lobata) was restricted to a single species of Epichloë (E. bromicola on Elymus repens); B. phrenione was recorded mainly from E. typhina infecting three different species of grass. The results of this study confirm that there is not a close species specific association between this fungus and this insect., Marlena Lembicz ... [et al.]., and Obsahuje seznam literatury