In this paper we study the Denjoy-Riemann and Denjoy-McShane integrals of functions mapping an interval $\left[ a,b\right] $ into a Banach space $X.$ It is shown that a Denjoy-Bochner integrable function on $ \left[ a,b\right] $ is Denjoy-Riemann integrable on $\left[ a,b\right] $, that a Denjoy-Riemann integrable function on $\left[ a,b\right] $ is Denjoy-McShane integrable on $\left[ a,b\right] $ and that a Denjoy-McShane integrable function on $\left[ a,b\right] $ is Denjoy-Pettis integrable on $\left[ a,b\right].$ In addition, it is shown that for spaces that do not contain a copy of $c_{0}$, a measurable Denjoy-McShane integrable function on $\left[ a,b\right] $ is McShane integrable on some subinterval of $\left[ a,b\right].$ Some examples of functions that are integrable in one sense but not another are included.