We provide new sufficient convergence conditions for the convergence of the secant-type methods to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, and Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions are violated. Numerical examples are also provided.
We provide local convergence theorems for Newton’s method in Banach space using outer or generalized inverses. In contrast to earlier results we use hypotheses on the second instead of the first Fréchet-derivative. This way our convergence balls differ from earlier ones. In fact we show that with a simple numerical example that our convergence ball contains earlier ones. This way we have a wider choice of initial guesses than before. Our results can be used to solve undetermined systems, nonlinear least squares problems and ill-posed nonlinear operator equations.
We provide new sufficient conditions for the convergence of the secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses “Lipschitz-type” and center-“Lipschitz-type” instead of just “Lipschitz-type” conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than the earlier ones and under our convergence hypotheses we can cover cases where the earlier conditions are violated.