Let R be a commutative Noetherian ring and let C be a semidualizing R-module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to C which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every Gc-injective module G, the character module G+ is Gc-flat, then the class GIc(R) Ac(R) is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class GIc(R) Ac(R) is covering., Elham Tavasoli, Maryam Salimi., and Obsahuje bibliografii