1 - 2 of 2
Number of results to display per page
Search Results
2. Spectral radius and Hamiltonicity of graphs with large minimum degree
- Creator:
- Nikiforov, Vladimir
- Format:
- print, bez média, and svazek
- Type:
- model:article and TEXT
- Subject:
- matematika, mathematics, Hamiltonian cycle, Hamiltonian path, minimum degree, spectral radius, 13, and 51
- Language:
- English
- Description:
- Let G be a graph of order n and λ(G) the spectral radius of its adjacency matrix. We extend some recent results on sufficient conditions for Hamiltonian paths and cycles in G. One of the main results of the paper is the following theorem Let k \geqslant 2, n \geqslant k^{3} + k + 4, and let G be a graph of order n, with minimum degree δ(G) \geqslant k. If \lambda \left( G \right) \geqslant n - k - 1, then G has a Hamiltonian cycle, unless G=K_{1}\vee (K_{n-k-1}+K_{k}) or G=K_{k}\vee (K_{n-2k}+\bar{K}_{k})., Vladimir Nikiforov., and Obsahuje seznam literatury
- Rights:
- http://creativecommons.org/publicdomain/mark/1.0/ and policy:public