Nitric oxide (NO) may play a role in the pathophysiology of excitotoxicity. It is also possible that increase in Ca2+ overload and NO-mediated events are involved in neuronal loss during excitotoxicity. Using nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry, we have investigated the effects of melatonin on NADPH-d positive hippocampal neurons after kainic acid (KA) induced excitotoxicity in female rats of Wistar strain. Cytosolic Ca2+ (free calcium) in all the respective experimental groups was also studied. Kainic acid was administered, with a single dose of 10 mg/kg/bw (body weight) to the animals. KA treated rats were given melatonin at a dose of 20 mg/kg/bw (for 14 day). On the last day of treatment, animals were transcardially perfused with 4 % paraformaldehyde under deep thiopental anaesthesia. Cryostat sections (20 µm) were cut and stained for NADPH-d positive neurons. KA exposed animals showed a significantly increased number of NADPH-d positive neurons in the dorsal and ventral blade of the dentate gyrus (DG), hilus, CA1 and CA3 area of hippocampus, with a parallel increase in intracellular free Ca2+ ion concentration, as compared to the control group. KA + melatonin-treated animal groups showed reduced number of NADPH-d positive neurons in DG, hilus, CA1 and CA3 areas and a decline in cytosolic Ca2+ concentration, as compared to KA treated group. Our study suggests that the enhanced levels of cytosolic Ca2+ and nitric oxide (NO) play an important role in kainate induced excitotoxicity. Inhibition of NO production may be another means whereby melatonin can reduce oxidative damage and seems to play important role in neuroprotection., A. Jain, ... [et al.]., and Obsahuje seznam literatury
The NADPH-diaphorase (NADPH-d) histochemical technique is commonly used to localize the nitric oxide (NO) produced by the enzyme nitric oxide synthase (NOS) in neural tissue. The expression of inducible nitric oxide synthase (iNOS) is induced in the late stage of cerebral ischemia, and NO produced by iNOS contributes to the delay in recovery from brain neuronal damage. The present study was performed to investigate whether the increase in nitric oxide production via inducible nitric oxide synthase was suppressed by the administration of aminoguanidine, a selective iNOS inhibitor, as it follows a decrease of NADPH-diaphorase activity (a marker for NOS) after four-vessel occlusion used as an ischemic model. The administration of aminoguanidine (100 mg/kg i.p., twice per day up to 3 days immediately after the ischemic insult) reduced the number of NADPH-diaphorase positive cells to control levels. Our results indicated that aminoguanidine suppressed NADPH-diaphorase activity, and also decreased the number of NADPH-diaphorase positive cells in the CA1 region of the hippocampus following ischemic brain injury.