The rock units of the NW Himalayan region are fragile, heavily fractured and highly deformed due to active tectonics and complex geological setup. Fast urbanization, road constructions along hill slopes and other infrastructural development activities also increased the slopes instability problems. The present study emphasizes the application of rock mass classification to estimate the rock mass properties along the Yadgar section Muzaffarabad, NW Himalayas, Pakistan. For this purpose, Rock Mass Rating (RMR) and Geological Strength Index (GSI) were used to characterize and classify the rock masses. In the present study, twenty-five sites have been investigated to evaluate rock properties along the Muzaffarabad-Neelum road, Sub-Himalayas, Pakistan. Result of the study shows that the Abbottabad Formation of Cambrian age is vulnerable in the Yadgar section with extremely poor RQD (Rock Quality Designation), lowest UCS (Unconfined Compression Strength) values and closely spaced discontinuities. and RMR values of the Abbottabad Formation ranges from 40-54 and classified as Poor to Fair having low GSI (20±3-35±3), blocky, disintegrated structure. The Paleocene Hangu Formation has lowest GSI (28±3-29±3; Blocky, Disturbed/ Seamy in nature) having RMR (40-45) and Eocene Kuldana Formation has GSI (30±3-45±3; Blocky) having RMR (34-67), are categorized as heavily broken, disintegrated and poorly interlocked rock masses. RMR values of rock units of the Paleocene Lockhart Formation (52-60), the Miocene Murree Formation (38-63), and the Eocene Margala Hill Limestone (38-61) are relatively higher values having GSI values ranges from (35±3-45±3; 35±3-50±3; 30±3-40±3) res)ectively. RMR and GSI values in Yadgar section, ranges between 34-67 and 20±3-50±3 respectively. Analysis shows positive correlation between GSI and RMR values. This approach to evaluate the rock mass classification through RMR and GSI will give the better estimation of rock mass properties along Muzaffarabad-Neelum road to identify the vulnerable slopes and design effective geotechnical measures.
Mango orchards in Pakistan are attacked by the scale insect, Drosicha mangiferae (Hemiptera: Monophlebidae), commonly called the "mango mealybug". This insect is univoltine, active from December through May and targets multiple host plants. We used DNA nucleotide sequences to characterize and determine the phylogenetic status of D. mangiferae. Mango mealybugs were collected from several tree species from different localities and patterns of phylogenetic and genetic diversity were examined at both nuclear (18S, ITS1) and mitochondrial (COI) genes. Phylogenetic analysis confirms that the mango mealybug belongs to the family Monophlebidae. Minor genetic differences in both the ITS1 and the COI barcode region were noted among D. mangiferae collected from different geographic localities. These genetic differences revealed the existence of two genotypes of D. mangiferae that are region specific but not host-specific. and Muhammad Ashfaq, Jehan Ara, Ali Raza Noor, Paul D.N. Hebert, Shahid Mansoor.
The rock agama, Laudakia caucasia Eichwald (Agamidae) is host to Plasmodium caucasica sp. n. and Saurocytozoon agamidorum sp. n. in western Pakistan. Plasmodium caucasica is characterized by very large meronts, 11-21 by 8-17 µm that produce 32-67 merozoites, which nearly fill the host erythrocyte, and smaller, ovoid to elongate gametocytes, 6-14 by 2.5-6 µm, with length by width (LW) 21-55 µm2, and L/W ratio 1.0-4.0. Host cells are usually mature erythrocytes. In Azerbaijan, P. caucasica parasitizes immature erythroid cells. Dimensions of meronts are 10-16 by 6-12 µm, and merozoite numbers are 12-44. Gametocytes are 6-14 by 3-6 µm, with LW 31-56 µm2, and L/W ratio 1.0-4.0. Saurocytozoon agamidorum sp. n. gametocytes are 6.5-13 µm in diameter, with LW 35-79 µm2, and L/W ratio 1.0-2.2. They occupy lymphocytes as host cells, which are greatly distorted by gametocyte presence and often show nuclei nearly divided into two portions, one portion at each end of the cell. Haemocystidium grahami (Shortt, 1922), redescribed from material found in L. caucasia from Azerbaijan, has rounded to elongate gametocytes, 8-19.5 by 4-8 µm, LW 60.5-102 µm2, and L/W ratio 1.0-4.5. The prominent light golden pigment granules often coalesce to nearly cover the surface of the gametocyte. The presence of P. caucasica and S. agamidorum extends the range of the two genera in saurian hosts throughout much of the southern Asia mainland.