Cardiovascular studies have confirmed that hydrogen sulphide (H2S) is involved in various signaling pathways in both physiological and pathological conditions, including hypertension. In contrast to nitric oxide (NO), which has a clear vasorelaxant action, H2S has both vasorelaxing and vasoconstricting effects on the cardiovascular system. H2S is an important antihypertensive agent, and the reduced production of H2S and the
alterations in its functions are involved in the initiation of spontaneous
hypertension. Moreover, cross-talk between H2S and NO has been reported. NO-H2S interactions include reactions between the molecules themselves, and each has been shown to regulate the endogenous production of the other. In addition, NO and H2S can interact to form a nitrosothiol/s complex, which has original properties and represents a novel nitroso-sulphide signaling pathway. Furthermore, recent results have shown that the interaction between H2S and NO could be involved in the endothelium-regulated compensatory mechanisms that are observed in juvenile spontaneously hypertensive rats. The present review is devoted to role of H2S in vascular tone regulation. We primarily focus on the mechanisms of H2S-NO interactions and on the role of H2S in blood pressure regulation in normotensive and spontaneously hypertensive rats.