Inflammation is a vital defense mechanism of living organisms. However, persistent and chronic inflammation may lead to severe pathological processes and evolve into various chronic inflammatory diseases (CID), e.g. rheumatoid arthritis, multiple sclerosis, multiple sclerosis, systemic lupus erythematosus or inflammatory bowel diseases, or certain types of cancer. Their current treatment usually does not lead to complete remission. The application of nanotherapeutics may significantly improve CID treatment, since their accumulation in inflamed tissues has been described and is referred to as extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration (ELVIS). Among nanotherapeutics, water-soluble polymer-drug conjugates may be highly advantageous in CID treatment due to the possibility of their passive and active targeting to the inflammation site and controlled release of active agents once there. The polymer-drug conjugate consists of a hydrophilic biocompatible polymer backbone along which the drug molecules are covalently attached via a biodegradable linker that enables controlled drug release. Their active targeting or bio-imaging can be achieved by introducing the cell-specific targeting moiety or imaging agents into the polymer conjugate. Here, we review the relationship between polymer conjugates and inflammation, including the benefits of the application of polymer conjugates in inflammation treatment, the anti-inflammatory activity of polymer drug conjugates and potential polymer-promoted inflammation and immunogenicity., E. Koziolová, K. Venclíková, T. Etrych., and Obsahuje bibliografii