This paper is concerned with the finite-time synchronization problem for a class of cross-strict feedback underactuated hyperchaotic systems. Using finite-time control and backstepping control approaches, a new robust adaptive synchronization scheme is proposed to make the synchronization errors of the systems with parameter uncertainties zero in a finite time. Appropriate adaptive laws are derived to deal with the unknown parameters of the systems. The proposed method can be applied to a variety of chaotic systems which can be described by the so-called cross-strict feedback systems. Numerical simulations are given to demonstrate the efficiency of the proposed control scheme.
In this paper, a novel approach for controlling complex networks is proposed; it applies sliding-mode pinning control for a complex network to achieve trajectory tracking. This control strategy does not require the network to have the same coupling strength on all edges; and for pinned nodes, the ones with the highest degree are selected. The illustrative example is composed of a network of 50 nodes; each node dynamics is a Chen chaotic attractor. Two cases are presented. For the first case the whole network tracks a reference for each one of the states; afterwards, the second case uses the backstepping technique to track a desired trajectory for only one state. Tracking performance and dynamical behavior of the controlled network are illustrated via simulations.