Data mining nowadays belongs to the most prominent Information
technologies, experiencing a boom of interest from users and software producers. Traditionally, extracting knowledge from data has been a domain of statisticians, and the largest variety of rnethods encountered in commercial data mining systems are actually methods for statistical data analysis tasks. One of the most important ones among them is testing hypotheses about the probability distribution underlying the data. Basically, it consists in checking the null hypothesis that the probability distribution, a priori cissumed to belong to a broad set of distributions, actually belongs to one of its narrow subsets, which must be precisely delimited in advance. However, in a situation in which the data mining is performed, there are seldom enough clues for such a precise delimitation. That is why the generalizations of statistical hypotheses testing to vague hypotheses háve been investigated for more than a decade, so far following the most straightforward way - to replace the set defining the null hypothesis by a fuzzy set. In this páper, a principally different generalization is proposed, based on the observational-logic approach to data mining, and in particular to hypotheses testing. Its key idea is to view statistical testing of a fuzzy hypothesis cis an application of an appropriate generalized quantifier of a fuzzy predicate calculus to predicates describing the data. The theoretical principles of the approach are elaborated for both crisp and fuzzy significance levels, and illustrated on the quantifier lower critical implication, well known from the data mining system Guha. Finally, the implementation of the approach is briefly sketched.
The logical foundations of processes handling uncertainty in information use some classes of algebras as algebraic semantics. Bounded residuated lattice ordered monoids (Rl-monoids) are common generalizations of BL-algebras, i.e., algebras of the propositional basic fuzzy logic, and Heyting algebras, i.e., algebras of the propositional intuitionistic logic. From the point of view of uncertain information, sets of provable formulas in inference systems could be described by fuzzy filters of the corresponding algebras. In the paper we investigate implicative, positive implicative, Boolean and fantastic fuzzy filters of bounded Rl-monoids.